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Abstract
Most studies on speaker verification systems focus on long-
duration utterances, which are composed of sufficient phonetic
information. However, the performances of these systems are
known to degrade when short-duration utterances are inputted
due to the lack of phonetic information as compared to the
long utterances. In this paper, we propose a method that com-
pensates for the performance degradation of speaker verifica-
tion for short utterances, referred to as “segment aggregation”.
The proposed method adopts an ensemble-based design to im-
prove the stability and accuracy of speaker verification systems.
The proposed method segments an input utterance into several
short utterances and then aggregates the segment embeddings
extracted from the segmented inputs to compose a speaker em-
bedding. Then, this method simultaneously trains the segment
embeddings and the aggregated speaker embedding. In addi-
tion, we also modified the teacher-student learning method for
the proposed method. Experimental results on different input
duration using the VoxCeleb1 test set demonstrate that the pro-
posed technique improves speaker verification performance by
about 45.37% relatively compared to the baseline system with
1-second test utterance condition.
Index Terms: speaker verification, speaker embedding, short
utterances, segment aggregation, teacher-student learning

1. Introduction
Many research studies have been carried out to improve the per-
formance of speaker verification using Deep neural networks
(DNNs), which have demonstrated the state-of-the-art perfor-
mance [1–4]. A speaker verification system refers to a system
that verifies the authenticity of a speaker using speech charac-
teristics. The information extracted by a speaker verification
system may include speaker-specific information, etc., and the
amount of such information may affect the performance of the
system. Such information can easily be exploited when the du-
ration of the speech is long and most speaker verification studies
have been conducted using long utterances.

However, compared to long utterances, short utterances
may not contain all the speech characteristics that can be ob-
tained from voice. In this case, uncertainty arises when ex-
tracting an utterance-level feature because there is less speaker-
specific information used to train the system. Therefore, the
performance of the system is reported to greatly degrade when
short utterances are input, and this is due to the increased un-
certainty in the short utterances [5, 6]. To solve this problem,
research studies have to focus on designing speaker verification
systems that are capable of authenticating both short and long
utterances.

Ensemble technique is widely used to obtain better predic-
tion performance than the case of using learning algorithms sep-

arately [7–9]. Bootstrap aggregating (bagging) technique is an
ensemble learning method that averages multiple estimates to
reduce the variance of an estimate [10]. Given a training dataset,
bagging creates several small-sized training sets by uniformly
sampling from the dataset, and then various weak predictors are
generated by training with each small-sized training set. The re-
sults of each generated bagging predictor are combined to make
a final decision—that is to produce a final predictor with high
performance.

Inspired from the bagging technique, we propose a novel
method to improve the performance for short-duration utter-
ances in speaker verification. Our objective is to ensure that
the performance of the system is not affected by the length of
input utterances. Our method makes the system robust to short
utterances by training with short utterance segments and long
utterances by using ensemble aggregation of segment embed-
dings extracted from the segmented utterances. Unlike the bag-
ging method that creates various weak predictors, the proposed
method develops a single predictor that generates multiple in-
ternal representations. In this paper, we refer to this method as
segment aggregation (SA).

The SA produces several short utterances by segmenting
an input utterance into short utterance segments, and then these
short utterances are simultaneously input into a shared network
in parallel. The network produces several segment embeddings
from the input segmented utterances, and the segment embed-
dings are aggregated into a single speaker embedding. The ag-
gregated speaker embedding is connected to the output layer
that performs speaker identification. To reduce the variance
between the segment embeddings that are extracted from seg-
mented utterances, we simultaneously train the speaker verifi-
cation system with these segment embeddings and the aggre-
gated speaker embedding. In addition, we train the system to
maximize the cosine similarity of the aggregated speaker em-
bedding and the original speaker embedding of baseline system
extracted from a long utterance to improve the performance for
long utterances.

The rest of this paper is organized as follows. Section 2
describes related works with a baseline system and speaker ver-
ification systems for short utterances. Section 3 introduces our
proposed method and Section 4 describes our proposed method
with teacher-student learning. Section 5 shows experiments and
results and conclusions are presented in Section 6.

2. Related Works
2.1. Raw waveform based DNN

Many recent studies have used less processed features for train-
ing DNN based speaker embedding extractor, and many re-
search studies have reported that DNNs based on direct mod-
eling of raw waveforms have several advantages over DNNs
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Table 1: Architecture of the modified RawNet. Batch normaliza-
tion and LeakyReLU are applied before the convolution layer in
the residual block, except for the first block [11].

Layer Input: raw wave (T × 1) Output size

Conv(3,3,128)
T/3× 128Stride-conv BN

LeakyReLU

Res block

 Conv(3,1,128)
Conv(3,1,128)
MaxPool(3)

 ×2 T/27× 128

Res block

 Conv(3,1,256)
Conv(3,1,256)
MaxPool(3)

 ×4 T/2187× 256

GRU GRU(1024) 1024

Speaker FC(1024) 1024embedding

Output FC(6112) 6112

Table 2: Comparison of the original system and the modified
version of RawNet. Performances are reported using EER on
the original VoxCeleb1 test set.

System Trained on EER (%)

# 1-RawNet [12] VoxCeleb 1 4.80
# 2-Baseline VoxCeleb 2 3.50

modeled with conventional acoustic features [13–15]. The rea-
son for using raw waveforms is that as the size of data increases,
the probability that DNNs extract the information needed for
each task from raw waveforms increases, and performance can
be improved [12, 16, 17]. In addition, by using raw waveforms,
the exploration of various hyper-parameters to extract acoustic
features is not required. For this reason, we adopt RawNet [12],
which takes raw waveforms as input, as the speaker embedding
extractor.

We used the modified version of the RawNet architecture
described in Table 1 as the baseline system. Table 2 describes
the performance of the original RawNet trained on the Vox-
Celeb1 dataset, referred to as system # 1, and our modified ver-
sion of RawNet trained on VoxCeleb2 dataset, referred to as
system # 2. Results from our experiments show that our base-
line system improve performance over the original system, lead-
ing to a relative error reduction (RER) of 27.1%. The proposed
method is applied to the system # 2.

2.2. Speaker verification systems for short utterances

Various methods have been proposed to improve the perfor-
mance of speaker verification systems for short utterances. [18]
proposed a short utterance compensation framework in speaker
verification that maximizes the cosine similarity of two speaker
embeddings extracted from long and short utterances. [19] pro-
posed an utterance-level aggregation method with a NetVLAD
or GhostVLAD layer in the wild scenario. This layer is adopted
for the application of a self-attentive pooling method with a
learnable dictionary encoding. [20] proposed a time-distributed
voting (TDV) aggregation system for short-segment speaker

recognition. This system extracts as much information as possi-
ble from a single utterance and then selects useful information.
Similar to [20], we extract useful information from a single ut-
terance, but train a system using intuitive ensemble technique
without using any pooling method, such as self-attentive pool-
ing and TDV.

3. Segment Aggregation
One of the well-known techniques to compensate for the poor
performance of speaker verification systems for short utterances
is to train the systems using short utterances in the training
phase. However, this above-stated technique increases systems’
robustness for short utterances but degrades the systems’ over-
all performance for long utterances.1 This result seems to have
occurred because the network is overfitting for short utterances
with strong uncertainty, and accordingly, the information is ex-
cessively omitted to consider for uncertainty even when a long
utterance is entered. To solve this problem, we segment long
duration utterances into several short utterance segments and
train a network using the short utterance segments in parallel.
The segment embeddings extracted from the segmented input
are element-wisely averaged to compose a speaker embedding,
and this speaker embedding is connected to the output layer of
the network that performs the speaker identification. We refer to
this technique as segment aggregation (SA) and the illustration
of the overall system is depicted in Figure 1-(a).

Let x be an input utterance of any speaker, x ∈ RF , where
F refers to the number of the samples in the training phase
(length of sequence). Given an input utterance x of any speaker,
a network segments the input utterance into K short utterances
xk ∈ RC , k = 1, ...,K, whereC is the length of each segment.
The network simultaneously extracts segment embeddings from
each short utterance segment and subsequently aggregates the
segment embeddings into a speaker embedding. The speaker
embedding is derived as follows:

e =
1

K

K∑
k

ek (1)

where e denotes an aggregated speaker embedding of an ut-
terance, K refers to the number of segments in an utterance
and ek denotes a segment embedding extracted from a segment
xk. Lastly, the speaker embedding is connected to an output
layer which is trained for speaker identification using categori-
cal cross-entropy (CCE) objective function.

For example, using SA technique, a segment length is first
set. When the segment length is set to 2s with an overlap of
1s with a mini-batch size of 6s, five segment utterances will be
created by each input utterance, and accordingly, five segment
embeddings are extracted by inputting these segment utterances
in parallel into the network.

This method optimizes aggregated speaker embeddings av-
eraged from segment embeddings. However, there is a possi-
bility that the variance of the segment embeddings increases.
This is because the method optimizes for speaker embeddings
and does not optimizes each segment embedding directly, and
the average value can be constant even if the variance of the
segment embeddings is large. Therefore, we further propose a
method to reduce the variance of the segment embeddings.

To increase the accuracy of segment embeddings, we si-
multaneously train the segment embeddings and the aggregated

1As a result of internal experiments, performance for long utterances
deteriorated when short utterances are used for training.
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Figure 1: Proposed methods to improve the performance on short utterances. (a): The segment aggregation system. The segment
embeddings extracted from segmented utterances are aggregated using the average function. Segment embeddings and the aggregated
speaker embedding are used simultaneously for training the output layers using categorical cross-entropy for speaker identification.
(b): The segment aggregation system with teacher-student learning. The student network utilizes speaker embeddings and soft-labels
created by the teacher network for training.

speaker embedding in separate output layers. Finally, the objec-
tive function Losssa for SA technique is defined as follows:

Losssa = Losse +W

K∑
k

Lossek (2)

where Losse denotes CCE for an output layer that receives
an aggregated speaker embedding, W denotes a weight for
Lossek , and Lossek denotes CCE for an output layer that re-
ceives a segment embedding.

4. Teacher-student learning
The teacher-student (TS) learning method was first proposed
for model compression and is being used in a variety of fields
[18, 21–23]. [18] uses two networks of the same architecture
and size. A teacher network (TN) that is pre-trained with long
utterances transfers useful information such as soft-label and
speaker embedding to a student network (SN). Then, the SN is
trained with short utterances to yield the correct answer similar
to the received speaker embedding and soft-label.

The existing TS learning method for short utterances is de-
signed to maximize the cosine similarity of two speaker embed-
dings extracted from long and short utterances thereby com-
pensating for the performance for short utterances. Similarly,
we make the speaker embedding aggregated from short utter-
ance segment embeddings with high uncertainty to be as close
as possible to the original speaker embedding extracted from
long utterances. Figure 1-(b) depicts our system that uses the
teacher-student learning.

We create a RawNet as a TN and a RawNet with the pro-
posed SA technique as an SN in order to adopt TS learning ar-
chitecture, and input utterances of the same duration into the
two networks. Let eT (x) be a speaker embedding extracted
from TN and eS(x) be the aggregated speaker embedding ex-
tracted from SN, where x refers a long input utterance. The ob-
jective function Lossts for the modified TS learning is defined
as follows:

Lossts =

J∑
j

Cos(eT (xj), eS(xj))

−
J∑
j

I∑
i

PT (si|xj)log(PS(si|xj))

(3)

where Cos(, ) denotes cosine similarity for two speaker em-
beddings, i and j refer to the speaker and utterance indices, and
PT (si|x) and PS(si|x) are probabilities for any speaker si for
TN and SN respectively. We add Lossts and Losssa for apply-
ing the TS learning method to our proposed system.

5. Experiments and results
We implemented the system with the PyTorch library [24].
Code for experiments in this paper is freely available.2

5.1. Dataset

We used the VoxCeleb2 dataset [3] in the training phase and
VoxCeleb1 dataset [25] in the validation and test phase. Vox-
Celeb1 contains approximately 330 hours of audio recordings
from 1251 speakers for text-independent scenarios. VoxCeleb2
has emerged as an extended version of the VoxCeleb1 dataset
and contains over a million utterances from 6112 speakers. We
used all the utterances of VoxCeleb2 for training and utterances
of 1211 speakers of VoxCeleb1 as validation data, and utter-
ances of 40 speakers of VoxCeleb1 as test data.

5.2. Experimental configurations

We input pre-emphasized raw waveforms into the network and
configured the mini-batch for training by cropping the duration
of input utterances to 59049 samples (≈ 3.69 s). To evaluate
the performances of the speaker verification systems on short
utterances, we cropped the test utterances into different lengths
of 1, 2 and 3 seconds—we set 16038 samples to a length of
1s, 32076 samples to a length of 2s, and 48114 samples to a
length of 3s. When using the SA technique, we divided input
utterances by overlapping about 10% of the segment length. An
output of the last fully-connected layer is used as a segment
embedding for using SA technique and the speaker embedding’s
dimensionality is 1024.

We used Leaky ReLU activation functions [26] with a neg-
ative slope of 0.3, AMSGrad optimizer [27] with a learning rate
of 0.001 and weight decay with λ = 1e−4. We used categorical
cross-entropy for all output layers. We did not use any augmen-
tation technique for training and test.

2https://github.com/kimho1wq/SegmentAggregation
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Table 4: Performance comparison of state-of-the-art speaker verification systems that adopted methods to improve performance for
short utterances and are trained on VoxCeleb2 dataset. Performances is reported EER on the original VoxCeleb1 test set.

Model Method Input Feature 3 sec, 2 sec, 1 sec, Full-length,
EER (%) EER (%) EER (%) EER (%)

Xie et. al. [19] Thin ResNet34 GhostVlad Spectrogram 5.47 7.69 13.20 3.22
Jung et. al. [18] RawNet TS Raw waveform 4.91 7.12 14.40 3.49
Ours RawNet SA Raw waveform 5.38 7.41 12.82 3.63
Ours RawNet SA + TS Raw waveform 4.59 6.05 11.15 3.15

Table 3: Results of our proposed system compared to the base-
line with different duration. The segment length for applying
SA technique is set to a fixed value or a random value. Perfor-
mances is reported in EER.

System Segment 3 sec, 2 sec, 1 sec,
length EER EER EER

Baseline - 6.64 8.93 20.41
# 3-SA 1 sec 5.97 7.63 12.41
# 4-SA 2 sec 5.49 7.38 14.46
# 5-SA 1-2 sec 5.38 7.41 12.82

# 6-SA + TS 1 sec 5.02 6.39 10.95
# 7-SA + TS 2 sec 4.87 6.11 13.13
# 8-SA + TS 1-2 sec 4.64 6.17 11.21
# 9-SA + TS 1-3 sec 4.59 6.05 11.15

5.3. Results analysis

Table 3 shows the results of applying our proposed methods
to the baseline system with different utterance duration. Sys-
tem # 3, 4, 6 and 7 use a fixed segment length, and the other
systems use a different segment duration for each mini-batch
in the training phase. The result of the baseline system shows
performances of system # 2 with various lengths. System #
3, 4 and 5 are generated by applying the SA technique to the
baseline system with varying segment lengths. We set the
weight of loss function Lossek to 0.2 to give more weight to
the loss function of the aggregated speaker embedding Losse.
Experimental results of these three systems confirmed the im-
proved performance compared to the baseline with all test ut-
terance conditions. The system trained with fixed segment
length shows improved performance on test sets with fixed seg-
ment lengths, whereas the system trained with different segment
lengths showed improved average performance on test sets with
varying lengths. The last four rows in Table 3 describe the re-
sults of applying the TS learning method to the SA system. To
experiment with the application of TS learning method, we set
the weight of loss function Lossek to 1.0 because the loss func-
tion Lossts for the teacher-student learning relatively reduces
the weight of existing loss function Lossek . Results of these
systems show that applying TS method to the SA system further
improved the performance, especially when the segment length
is randomly generated with a value between 1 to 3 seconds—the
average performance is most improved.

Table 4 shows the performance comparison of state-of-the-
art speaker verification systems that adopted different meth-
ods to improve performance for short utterances on the origi-
nal VoxCeleb1 test set. We couldn’t directly compare the per-

formance in [19] and [20] because these studies report perfor-
mances using self-curated trials and are not freely available.
However, the code of [19] is freely available, so using this code
we retested their system on the original VoxCeleb1 test set and
compared its performance. Results show that our system using
SA method (system # 5) outperforms the performance of state-
of-the-art systems when using 1-second test utterances with
EER of 12.82%. The system adopting the SA and TS methods
(system # 9), which has the best average performance, outper-
forms for all length of test utterances than other start-of-the-art
systems. System # 9 demonstrates an RER of 45.37% compared
to the modified RawNet and an RER of 22.57% compared to the
RawNet that applied TS learning method with 1-second test ut-
terance condition.

6. Conclusions
In this paper, we propose a novel method to improve the perfor-
mance of a speaker verification system when short-duration ut-
terances are input. Our proposed method makes a system robust
to short utterances by training the system with short utterance
segments and long utterances by using ensemble aggregation of
segment embeddings extracted from segmented utterances. The
method segments an input utterance into several shorter utter-
ances and aggregates the segment embeddings extracted from
the segmented utterances into a speaker embedding. Also, the
proposed method simultaneously trains multiple segment em-
beddings and the aggregated speaker embedding to reduce the
variance between the segment embeddings. In addition, we ap-
ply the teacher-student learning method to the proposed system
to improve the performance of the aggregated speaker embed-
ding. We use the intuitive ensemble technique which divides the
existing long utterance into several short utterances to achieve
high robustness for short utterances. Experimental results are
reported using EERs with different input duration from the Vox-
Celeb1 test set. Experimental results show that the system that
applied our proposed method and the TS learning method has
improved average performance for both long and short utter-
ances of different duration. Notably, the system showed an im-
proved performance of around 45.37% compared to the baseline
system with a 1-second test utterance condition.
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