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Abstract

We introduce sum-product networks (SPNs) for robust speech

processing through a simple robust automatic speaker identifi-

cation (ASI) task *. SPNs are deep probabilistic graphical models
capable of answering multiple probabilistic queries. We show

that SPNs are able to remain robust by using the marginal prob-

ability density function (PDF) of the spectral features that reli-

ably represent speech. Though current SPN toolkits and learn-

ing algorithms are in their infancy, we aim to show that SPNs

have the potential to become a useful tool for robust speech pro-

cessing in the future. SPN speaker models are evaluated here on

real-world non-stationary and coloured noise sources at multi-

ple signal-to-noise ratio (SNR) levels. In terms of ASI accuracy,

we find that SPN speaker models are more robust than two re-

cent convolutional neural network (CNN)-based ASI systems.

Additionally, SPN speaker models consist of significantly fewer

parameters than their CNN-based counterparts. The results in-

dicate that SPN speaker models could be a robust, parameter-

efficient alternative for ASI. Additionally, this work demon-

strates that SPNs have potential in related tasks, such as robust

automatic speech recognition (ASR) and automatic speaker ver-

ification (ASV).

Index Terms: sum-product networks (SPN), marginalisation,

missing-feature approach, robust automatic speaker identifica-

tion.

1. Introduction

The task of a text-independent automatic speaker identification

(ASI) system is to identify a speaker from a given voice record-

ing, irrespective of its linguistic content. This is accomplished

by modelling the voice characteristics of each speaker after an

enrolment phase [1]. Common applications of ASI include the

selection of a speaker-dependent acoustic model for an auto-

matic speech recognition (ASR) system [2] and speaker seg-

mentation — an important pre-processing step for speaker di-

arisation [3]. The realisation of each application is dependent

upon a high-performance ASI system. The first widely adopted

ASI system utilised Gaussian mixture model (GMM) speaker

models [4].

One obstacle that prevented the commercial introduction

of GMM speaker models was their poor performance in the

presence of noise [5], spurring the investigation of robust ap-

proaches [6]. A noteworthy approach was the missing-feature

approach, which is underpinned by evidence that speech is intel-

ligible to humans even after it has undergone substantial spec-

tral masking [7]. Marginalisation, as proposed by Cook et al.

[8], has been the most prominent missing-feature approach in

the literature [9], and is able to significantly increases the ro-

bustness of a GMM speaker model [10]. For marginalisation,

the marginal probability density function (PDF) is obtained by

integrating over the components of the feature vector that have

been classified as unreliable representations of speech [11].

Classification is thus performed on a partial instantiation of a

given feature vector, consisting of only the components that re-

liably represent speech.

Recently, ASI and automatic speaker verification (ASV)

systems employing deep neural networks (DNNs) have demon-

strated a higher performance than GMM and i-vector-based sys-

tems [12]. One example is the x-vector system, which utilises

pooling and a DNN trained to discriminate between speakers

to map speech to a fixed-size embedding [13]. Convolutional

neural networks (CNNs) have also been employed [14]. Sinc-

Net is a CNN that employs parametrised sinc functions to pre-

define a bank of band-pass filters for its first layer [15]. An-

other example proposed by Xie et al. [16] utilises a ‘thin’

residual CNN (referred to as Xie2019 henceforth). It also in-

cludes dictionary-based NetVLAD [17] and GhostVLAD [18]

layers for feature aggregation. Despite their high performance

on clean speech, modern ASI systems are still susceptible to

performance degradation in the presence of noise [19]. Ad-

ditionally, DNNs are not probabilistic models and cannot em-

ploy classifier-compensation missing-feature approaches, such

as marginalisation. Currently, the most popular approach to in-

crease the robustness of a DNN-based system is to use a front-

end to pre-process the noisy speech [20, 21].

In 2011, Poon et al. [22] proposed a deep tractable proba-

bilistic graphical model called the sum-product network (SPN).

An SPN can be described as a deep neural network (DNN) re-

stricted to using sum and product operators. When viewed as

a probabilistic graphical model, an SPN can be described as a

rooted directed acyclic graph with distributions as leaves. SPNs

have clear semantics; each node represents an unnormalised

joint probability distribution over a set of variables. As they

can answer marginal inference queries, SPNs lend themselves

well to marginalisation. One disadvantage is that structure and

weight learning algorithms for SPNs, as well as libraries, are

currently undeveloped, as highlighted by Jaini et al. [23]. How-

ever, the long-term outlook of SPNs is positive. New SPN

toolkits are being developed, such as LibSPN [24], that take

advantage of modern machine learning toolkits, such as Tensor-

Flow [25]. Additionally, recently proposed SPN architectures

developed for temporal (dynamic SPNs [26]) and spatial repre-

sentations (deep generalised convolutional SPNs (DGC-SPNs)

[27]) have shown promising results.

We propose SPNs and marginalisation for robust ASI. We

first formulate marginalisation for SPNs. We then investigate

SPNs and marginalisation on a simple robust ASI task. The

structure of each SPN speaker model is learned using LearnSPN

[28]. SPN speaker models are evaluated against GMM speaker

models [29], SincNet [15], and Xie2019 [16]. The SPN and

GMM speaker models employ marginalisation, whilst SincNet

and Xie2019 employ the long short-term memory ideal ratio

mask (LSTM-IRM) estimator by Chen et al. [30] as a front-
—

https://github.com/anicolson/SPN-ASI 
*The SPN ASI system is available at  
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end. SPN speaker models are evaluated using multiple condi-

tions, including real-world non-stationary and coloured noise

sources and multiple signal-to-noise ratio (SNR) levels. From

the presented results, we aim to demonstrate the following: 1)

SPN speaker models are more robust than GMM speaker mod-

els when marginalisation is and is not used, 2) SPN speaker

models utilising marginalisation have the potential to be more

robust than recent CNN-based ASI systems that employ a front-

end technique, and 3) SPNs and marginalisation have potential

in related robust speech processing tasks, such as robust ASR

and ASV.

2. SPN speaker models

2.1. Features

For marginalisation, a frequency-domain representation is re-

quired. Hence, we employ the log-spectral subband energies

(LSSEs) of the clean speech power spectral density (PSD) es-

timate as features for the SPN and GMM speaker models. The

LSSEs are computed from the single-sided PSD estimate:1

Xb = log

Nd/2
∑

k=0

hb,kP̂k, 0 ≤ b ≤ B − 1, (1)

where Nd denotes the time-frame duration in discrete-time sam-

ples, k denotes the discrete-frequency bin, P̂k, for all k, denotes

the PSD estimate for a given time-frame, and hb,k, for all k,

denotes the bth filter of a bank of B triangular-shaped critical

band filters spaced uniformly on the mel-scale. The PSD is es-

timated from the short-time Fourier transform (STFT) of the

clean speech using the periodogram method, as in [10].
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Figure 1: SPN speaker model with univariate Gaussian leaves.

2.2. SPN speaker models with Gaussian leaves

An SPN [22] specifies an unnormalised joint distribution over

a set of random variables, X = (X1, X2, ..., XB)
⊤, where in

this case, X is the LSSEs for a time-frame of clean speech. An

observation of X is denoted by x = (x1, x2, ..., xB)
⊤. Hence,

the SPN, S, for speaker class C is a function of the observed

feature vector, S(x|C), where the value of the SPN is given by

its root. An SPN consists of multiple layers of sum and product

nodes, with distributions as leaves. The multivariate distribution

of the ith leaf is over a subset of the variables: Xi ⊆ X, and is

assumed to be normally distributed: Xi ∼ N (µ,Σ|i, C), with

mean µ, and diagonal covariance Σ. The PDF for the ith leaf

1For convenience, the time-frame index is omitted from the notation.

is given by

N (xi|i, C) =
∏

d∈D

1
√

2πΣi,C(d, d)
e
−

(xi(d)−µi,C (d))2

2Σi,C (d,d) , (2)

where D ⊆ (1, 2, ..., B)⊤ indicates the random variable indices

for Xi. An SPN over two variables with univariate Gaussian

leaves is shown in Figure 1.

If node i is a product node, its value is given by the prod-

uct of the values of its children, Ch(.): Si =
∏

j∈Ch(Si)
Sj ,

where Sj is the jth child of node Si. If node i is a sum

node, its value is given by the sum of the values of its children:

Si =
∑

j∈Ch(Si)
wijSj , where weight wij is the non-negative

weighted edge between Si and Sj . To be a valid joint distri-

bution, an SPN must be both decomposable, and complete, as

described in [22]. The scope of a node, Sc(.), is defined as the

set of variables that are descendants of it. An SPN is said to

be decomposable when the scopes of the children of its product

nodes are disjoint: ∀Sj , Sk ∈ Ch(Si), Sc(Sj) ∩ Sc(Sk) = ∅,

where ∅ indicates an empty set. An SPN is said to be complete

when the scopes of the children of its sum nodes are identical:

∀Sj , Sk ∈ Ch(Si), Sc(Sj) = Sc(Sk).

2.3. Marginalisation for SPNs

For marginalisation, each component of an observed noisy

speech feature vector is classified as either a reliable or an un-

reliable representation of the corresponding unobserved clean

speech component. The noisy speech feature vector, y, can thus

be described as the union of the reliable and unreliable compo-

nents: y = yr ∪ yu. Here, we not only apply marginalisation to

SPNs, but also bounded marginalisation, as proposed by Cook

et al. [22]. For bounded marginalisation, the value of an un-

reliable component is utilised as the upper bound of the unob-

served clean speech component value. For LSSEs, the bounds

are taken from [−∞, yu
n]. Thus, the PDF for the ith leaf be-

comes:

N (yr
i , x

u
i ≤ y

u
i |i, C) = N (yr

i |i, C)

∫ yui

−∞

N (xu
i |i, C)dx

u
i .

(3)

For marginalisation, the unreliable components are treated as

missing and the bounds are taken from [−∞,∞]. The integral

in Equation (3) thus reduces to unity, giving N (yr
i |i, C). When

all of the components of yi are unreliable, it is treated as a vec-

tor with no instantiated components: N (yr
i = ∅|i, C) = 1.

3. Experiment setup

3.1. Signal processing

The feature vectors for the GMM and SPN speaker models

are computed using a Hamming window function, with a time-

frame duration of 32 ms (512 discrete-time samples) and a time-

frame shift of 16 ms (256 discrete-time samples). The 257-point

single-sided PSD estimate for a time-frame is used and includes

both the DC and Nyquist frequency component. The LSSEs

are computed from the PSD estimate using 26 triangular-shaped

critical band filters spaced uniformly on the mel-scale.

3.2. Classification of reliable spectral components

Here, the reliability of a spectral component is determined by

its a priori SNR, as in [31]. A component with an a priori SNR
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Table 1: ASI accuracy (%) for the real-world non-stationary noise sources. The average improvement over the model in the preceding

row is shown in the last column. The highest accuracy for each condition is shown in boldface.

Model Marg. Bounds

SNR level (dB)
Average

impr.
Voice babble Street music

-5 0 5 10 15 -5 0 5 10 15

GMM [29] ✗ ✗ 0.00 0.00 0.63 13.02 50.48 0.00 0.00 0.95 5.40 25.40 -

SPN ✗ ✗ 0.00 0.00 1.59 15.56 50.16 0.00 0.32 1.27 6.03 25.71 +0.48

GMM [29] ✓ ✗ 2.22 6.35 18.10 46.98 79.37 4.76 10.48 20.32 37.46 66.35 -

SPN ✓ ✗ 2.22 7.30 19.05 50.79 83.49 4.13 10.48 24.13 40.95 71.43 +2.16

GMM [29] ✓ ✓ 15.24 29.21 48.57 72.70 89.21 20.63 32.06 54.60 71.11 85.40 -

SPN ✓ ✓ 14.60 32.70 55.87 77.78 91.43 22.54 34.92 59.37 74.29 90.16 +3.49

SincNet [15] + IRM [30] - - 0.63 4.44 25.40 71.75 92.70 1.27 5.40 23.81 64.44 92.38 -17.14

SincNet [15] - - 0.32 1.59 18.10 56.83 93.02 0.63 2.86 11.11 46.98 85.40 -6.54

Xie2019 [16] + IRM [30] - - 0.63 1.27 10.48 28.89 53.33 0.32 1.27 4.44 20.63 40.95 -15.46

Xie2019 [16] - - 0.32 0.95 4.13 14.92 41.27 0.00 0.32 2.54 13.65 35.56 -4.85

greater than 0 dB is classified as reliable [32]. Deep Xi-ResNet

from [33] is used here as the a priori SNR estimator. Deep Xi

is a deep learning approach to a priori SNR estimation [34],

and is available at: https://github.com/anicolson/

DeepXi. It estimates the a priori SNR for each of the 257

frequency-domain components of a noisy speech time-frame.

The a priori SNR estimate for each subband is subsequently

found by applying the filterbank used to compute the LSSEs.

3.3. Training and test sets

The TIMIT corpus [35] (16 kHz, single-channel), which con-

sists of 630 speakers with 10 utterances each, is used as the

clean speech. The si∗ and sx∗ subsets are used for training

(5 040 utterances) and the sa∗ subset is used for testing (1 260
utterances). Each clean speech recording from the sa∗ subset

is mixed additively with one of four real-world noise source

recordings to create the noisy speech for testing (315 clean

speech recordings for each noise source). Each noisy speech

recording is replicated at five SNR levels: {−5, 0, 5, 10, 15}
dB, forming a test set of 6 300 noisy speech recordings. The

real-world noise sources include two non-stationary and two

coloured. The two real-world non-stationary noise sources in-

clude voice babble from the RSG-10 noise dataset [36] and

street music (recording no. 26 270) from the Urban Sound

dataset [37]. The two real-world coloured noise sources include

F16 and factory (welding) from the RSG-10 noise dataset [36].

3.4. ASI systems

GMM: For each speaker, a GMM consisting of 48
diagonal-covariance clusters is trained on the training set us-

ing the expectation-maximisation (EM) algorithm [38], and the

k-means++ algorithm for parameter initialisation [39].

SincNet: [15] is available at: https://github.com/

mravanelli/SincNet and is trained using the training set

with default hyperparameters.

Xie2019: [16] is available at: https://github.com/

WeidiXie/VGG-Speaker-Recognition and is trained

using the training set with default hyperparameters and a 1 sec-

ond input spectrogram size.

SincNet + IRM & Xie2019 + IRM: The LSTM-IRM es-

timator from [30] is used as the front-end for SincNet and

Xie2019. The training data and configuration from [40] is used

specifically.

SPN: Each speaker is modelled using an SPN with uni-

variate Gaussian leaves. The SPFlow library is used to imple-

ment the SPN speaker models [41]. A variant of the Learn-

SPN algorithm [28] that partitions and clusters variables us-

ing the Hirschfeld-Gebelein-Rényi maximum correlation coef-

ficient [42] is used as the structure learning algorithm. The min-

imum number of instances to split is set to 50 and the threshold

of significance is set to 0.3 for the structure learning algorithm.

4. Results and discussion

4.1. Real-world non-stationary noise sources

Table 1 shows the ASI accuracy for two real-world non-

stationary noise sources: voice babble and street music. Over all

of the tested conditions in Table 1, SPN speaker models demon-

strated an average improvement of 0.48% over GMM speaker

models (no marginalisation). This indicates that SPN speaker

models are better able to model the joint distribution of each

speaker’s features. It can be seen that the robustness of SPN

speaker models increases significantly when either marginalisa-

tion or bounded marginalisation is used. SPN speaker mod-

els attained an average improvement of 2.16% and 3.49%
over GMM speaker models when marginalisation and bounded

marginalisation are used, respectively. The performance im-

provement that SPN speaker models posses over GMM speaker

models is thus extended when either marginalisation or bounded

marginalisation is used.

SPN speaker models employing bounded marginalisation

are able to outperform SincNet + IRM, with an average im-

provement of 17.14%. While SincNet + IRM achieved the best

accuracy at 15 dB for both non-stationary noise sources, it is

outperformed at lower SNR levels by SPN speaker models em-

ploying bounded marginalisation. The results presented in Ta-

ble 1 show that SPN speaker models are robust to real-world

non-stationary noise sources when marginalisation and bounded

marginalisation is used, especially at lower SNR levels.

4.2. Real-world coloured noise sources

Table 2 shows the ASI accuracy for two real-world coloured

noise sources: F16 and factory. Over all of the tested con-

ditions, SPN speaker models demonstrated an average im-

provement of 1.33% and 2.66% over GMM speaker models

when marginalisation and bounded marginalisation are used,
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Table 2: ASI accuracy (%) for the real-world coloured noise sources. The average improvement over the model in the preceding row is

shown in the last column. The highest accuracy for each condition is shown in boldface.

Model Marg. Bounds

SNR level (dB)
Average

impr.
F16 Factory

-5 0 5 10 15 -5 0 5 10 15

GMM [29] ✗ ✗ 0.32 0.32 0.95 0.95 10.16 0.63 1.27 0.63 1.90 12.06 -

SPN ✗ ✗ 0.32 0.32 0.32 2.54 14.92 0.63 0.63 0.63 2.54 13.65 +0.73

GMM [29] ✓ ✗ 1.90 7.30 21.27 34.29 58.73 3.17 5.71 10.79 25.40 53.65 -

SPN ✓ ✗ 1.90 10.16 21.59 34.60 59.37 2.54 6.35 14.29 28.89 55.87 +1.33

GMM [29] ✓ ✓ 19.37 35.24 46.98 62.54 80.32 11.75 18.41 36.83 54.60 81.90 -

SPN ✓ ✓ 22.54 36.83 49.84 66.35 81.90 10.48 21.59 39.68 56.83 82.54 +2.06

SincNet [15] + IRM [30] - - 0.63 1.27 5.71 26.67 72.70 0.95 1.59 13.02 44.13 86.67 -21.52

SincNet [15] - - 0.32 0.63 4.13 16.19 57.78 0.00 0.95 5.71 35.56 78.41 -5.37

Xie2019 [16] + IRM [30] - - 0.32 0.32 2.86 6.98 20.00 0.00 0.32 0.63 2.86 21.27 -14.41

Xie2019 [16] - - 0.32 0.63 3.17 7.62 21.90 0.95 0.63 1.27 5.71 26.67 +1.33

Table 3: Average number of parameters used by each ASI sys-

tem for each of the 630 speakers.

SPN GMM Xie2019 SincNet

Params. per speaker 2 502 2 544 13 545 36 718

respectively. This indicates that marginalisation and bounded

marginalisation are more suited to SPN speaker models than

GMM speaker models. SPN speaker models utilising bounded

marginalisation were also able to outperform SincNet + IRM,

with an average performance increase of 21.52%.

The results presented in Tables 1 and 2 show that SPN

speaker models are robust to both real-world non-stationary

and coloured noise sources when marginalisation or bounded

marginalisation is used. The number of parameters that each

ASI system expends on a speaker is specified in Table 3. SPN

speaker models are more robust than SincNet, whilst employ-

ing 14.7 times fewer parameters on average per speaker. This

exhibits the parameter efficiency of SPN speaker models.

4.3. Future direction

In this work, standard SPNs are used as speaker models. The

structure learning algorithm used to find each SPN speaker

model is LearnSPN (introduced in 2013) [28], which was the

second-ever proposed. An increase in performance can likely

be realised by utilising more advanced SPN architectures, such

as random and tensorised SPNs (RAT-SPNs) [43], DGC-SPNs

[27], or dynamic SPNs [26]. Such SPN architectures use prede-

fined structures (i.e. no structure learning algorithm is required)

and can be trained discriminatively using modern stochastic

gradient descent optimisation algorithms [44]. Alternatively,

they can be trained generatively using hard EM [22]. These ca-

pabilities are to be made available to researchers through toolk-

its such as LibSPN [24]. In this work we investigate SPNs and

marginalisation on a simple robust ASI task. ASI was chosen

as the task to demonstrate the robustness capabilities of SPNs,

as a system could be quickly developed. The results presented

in this work lead to more complicated robust speech process-

ing tasks being investigated in future work (complicated in the

sense that more system development is required). Such tasks

include robust ASR and ASV.

5. Conclusion

SPNs utilising marginalisation are proposed for robust ASI.

They are evaluated using real-world non-stationary and

coloured noise sources at multiple SNR levels. It was found that

SPN speaker models and marginalisation are more robust than

two recent CNN-based ASI systems that employ significantly

more parameters. With the development of new toolkits and ar-

chitectures, SPNs and marginalisation are predicted to have a

bright future in robust ASI, as well as robust ASR and ASV.
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