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Abstract
We propose a data expansion method for learning a multilin-
gual semantic embedding model using disjoint datasets contain-
ing images and their multilingual audio captions. Here, disjoint
means that there are no shared images among the multiple lan-
guage datasets, in contrast to existing works on multilingual se-
mantic embedding based on visually-grounded speech audio,
where it has been assumed that each image is associated with
spoken captions of multiple languages. Although learning on
disjoint datasets is more challenging, we consider it crucial in
practical situations. Our main idea is to refer to another paired
data when evaluating a loss value regarding an anchor image.
We call this scheme “pair expansion”. The motivation behind
this idea is to utilize even disjoint pairs by finding similarities,
or commonalities, that may exist in different images. Specifi-
cally, we examine two approaches for calculating similarities:
one using image embedding vectors and the other using ob-
ject recognition results. Our experiments show that expanded
pairs improve crossmodal and cross-lingual retrieval accuracy
compared with non-expanded cases. They also show that sim-
ilarities measured by the image embedding vectors yield better
accuracy than those based on object recognition results.
Index Terms: Vision and spoken language, multilingual se-
mantic embeddings, disjoint datasets, pair expansion, cross-
lingual retrieval

1. Introduction
As the accuracy of visual object recognition and speech recog-
nition improves, these applications have spread across various
fields. However, these recognition systems depend on learning
datasets and require that the class labels to be recognized are
defined in them. Preparing such a dataset is becoming recog-
nized as a common bottleneck in terms of dataset construction
costs and the difficulty in a priori definition of the classes to be
recognized. In order to solve this problem, we aim to develope
a robust, natural, and human-like learning scheme.

Many unsupervised learning methods have been studied so
far [1–8]. Among them, we focus on knowledge acquisition
based on co-occurrences of multiple modality inputs, such as vi-
sual information and multilingual speech information. In the lit-
erature, the so-called DAVEnet has been proposed that employs
multiple encoders to convert information of different modalities
to vectors in the common space [9–14]. These encoders were
learned on the basis of metric learning using a large amount of
paired data consisting of images and their speech captions. Mul-
tilingual models based on a dataset consisting of English, Hindi,
and Japanese speech captions for a common image set has been
shown to enable the acquisition of translation knowledge using

Figure 1: Illustration of our method

the images as pivots [15–17].
In these studies, as shown in the upper part of Figure 1, a set

of aligned data, that is, multilingual audio captions describing
a common image, were used for training. For example, given a
set of images and their English/Japanese audio captions, the em-
bedding space was constructed by metric learning in a pairwise
manner. However, specific preparation is needed to build such
a multilingual corpus, and in practice, a learning method that
can be trained on disjoint datasets is desirable. Here, disjoint
means there are no images shared by multiple language audio
captions, as shown in the lower part of Fig. 1. This is because it
is easier to collect disjoint datasets using e.g. TV shows or nar-
rated videos on the Web [18–21], compared with the aligned
datasets.

Thus, we propose a pair expansion method that can expand
the image-audio caption pairs even for disjoint datasets. The
method utilizes image similarities to find useful paired data for
training. In this paper, we specifically examine two approaches
for calculating the image similarities, one using image embed-
ding vectors during training and the other using object recog-
nition results for the images. Our experiments show that the
expanded positive pairs improved crossmodal and cross-lingual
retrieval accuracy compared with the original paired data. We
also show that the use of image embedding vectors yields better
results than the object recognition results.

Our paper is organized as follows. Section 2 introduces
related work. Section 3 describes our method. Section 4 evalu-
ates the effectiveness of our method in terms of crossmodal and
cross-lingual retrieval tasks. Finally, Section 5 concludes this
paper.
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2. Related work
Many methods have been proposed to construct an embedding
space based on the correspondence between visual and natural
language information and applied to crossmodal search, cross-
lingual search, and machine translation [22–26]. In those meth-
ods, images and text captions in multiple languages were rep-
resented by vectors using corresponding encoders, and a la-
tent space was constructed by metric learning based on paired
data. Recently, Kádár et al. used disjoint image/text caption
datasets for learning, which do not overlap images for each lan-
guage [27, 28]. In [28], they demonstrated the effectiveness of
creating pseudo pairs across datasets using the similarity be-
tween the embedding vectors of text captions and utilizing them
in the metric learning process.

Models representing images and spoken languages, in the
form of audio signals, in a common embedding space have also
been proposed [13, 29, 30]. For example, an embedding space
was constructed using English and Hindi spoken captions for a
common image set [15,16]. Cross-lingual search and translation
knowledge acquisition were also confirmed to be possible by
using a trilingual model including English, Hindi, and Japanese
speech captions [17]. Havard et al. built a monolingual model
for each language of the English and Japanese speech caption
datasets without common images, and achieved cross-lingual
search using images as pivots [29]. Our approach is similar
in motivation to those works, but novel in that it utilizes dis-
joint image-audio relationships. Unlike [28], for example, our
method finds another image-audio pair in the learning process
for a pivot image.

Other related works include studies dealing with the co-
occurrence of visuals and speech, such as the association
of handwritten digits and spoken numbers [31, 32], visually-
grounded keyword spotting [33–35], image-based audio cap-
tion generation [36,37], applications to speech recognition [38],
audio-visual representation learning [39, 40], and grounding
spoken words in narrated videos [41].

3. Method
Given a triplet (Ii, A

X
i , AY

i ) consisting of an image I and
speech audio captions A in language X and Y for I , the pa-
rameters of the corresponding encoders are learned on the basis
of the margin rank criterion [42], so that the d-dimensional em-
bedding vectors (Ii,A

X
i ,AY

i ) obtained by inputting these into
the image encoder and the audio encoders are placed close to
each other [15]. The overall loss function can be written as:

Lc =

B∑
i=1

(
rank(Ii,A

X
i ,AX

i1) + rank(AX
i , Ii, Ii2)

+ rank(Ii,A
Y
i ,AY

i3) + rank(AY
i , Ii, Ii4)

+ rank(AX
i ,AY

i ,AY
i5) + rank(AY

i ,AX
i ,AX

i6)
)
. (1)

The rank function for each term is:

rank(a,p,n) = max(0, η − s(a,p) + s(a,n)), (2)

where a is an anchor vector, p is a positive vector paired with
the anchor, n is a negative vector not paired with the anchor,
s(a,p) is an inner product aTp, and η is a hyperparameter rep-
resenting a margin. The parameters of the encoders are learned
so that the inner product of the anchor vector and the posi-
tive vector is larger than that of the negative vector. The nega-
tive vector indices i1, i2, . . . , i6 are generally chosen at random

from the mini-batch size B. The effectiveness of using semi-
hard negative mining has been also reported in [13].

In this paper, we assume that the triplets (Ii, AX
i , AY

i ) can-
not be obtained as input data. Our objective is to learn a mul-
tilingual semantic space under the condition that (IXi , AX

i ),
a pair of an image and its audio caption in language X , and
(IYj , AY

j ), a pair of an image and its audio caption in language
Y , are respectively composed of the image sets that do not con-
tain any images in common. In order to achieve this goal, we
expand the image-audio caption pairs to the disjoint datasets on
the basis of the image similarity. Here, we consider two ap-
proaches for calculating the image similarities as follows.

3.1. Embedded vector-based pair expansion

The first approach is to measure similarity on the basis of the
embedded vectors in the embedding space. That is, this ap-
proach can be considered modality-independent. If the content
of the images are similar, we assume that the audio captions
of the images have similar intentions even if the languages are
different. We refer to the pairs comprising such images and its
audio captions as the expanded pairs. We use them in the com-
putation of the cross-lingual terms of Eq. (1). First, given the
images {IXi }Bi=1, we sample N images {IYn }Nn=1 that are asso-
ciated with the audio captions in language Y . Next, we calcu-
late the similarity between those images using the inner product
of their embedding vectors during training, to obtain a similar-
ity matrix S of the size B ×N . Then, for image IXi , the most
similar image IYli is selected among the N images as follows:

Si,n = s(IX
i , IY

n ), li = argmax
n

Si,:. (3)

Finally, the audio caption AY
li

and the image IYli are considered
as an expanded pair for the audio caption AX

i of the image IXi .
For the images {IYj }Bj=1, on the basis of the similarity matrix
calculated in a similar manner, audio caption AX

mj
associated

with IXmj
is regarded as a positive counterpart to the image IYj .

Note that this method does not require additional pre-trained
models except for the disjoint datasets, and it only incorporates
new pairs as the learning proceeds.

On the basis of such expanded pairs, the overall loss func-
tion can be defined as follows:

Ls =

B∑
i=1

(
rank(IX

i ,AX
i ,AX

i1) + rank(AX
i , IX

i , IX
i2)

)
+

B∑
j=1

(
rank(IY

j ,AY
j ,AY

j1) + rank(AY
j , IY

j , IY
j2)

)

+

B∑
i=1

rank(AX
i ,AY

li ,A
Y
l′ ) +

B∑
j=1

rank(AY
j ,AX

mj
,AX

m′).

(4)

In practice, we combined the sampling-based triplet loss and
the semi-hard negative training with equal weights in accor-
dance with [13]’s results. For both the randomly sampled and
semi-hard negative mined loss functions, we selected the nega-
tive vectors from the same mini-batch, such that i1 ̸= i, i2 ̸=
i, j1 ̸= j, j2 ̸= j, l′ ̸= li, and m′ ̸= mj .

3.2. Object recognition-based pair expansion

The second approach is to calculate the image similarity on
the basis of the object recognition results. This is a modality-
specific approach. Among many image processing methods, we
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Table 1: Retrieval recall scores on the validation set in the dis-
joint setting for models trained on the English and Hindi spoken
captions. [29]’s results are also reported for comparison.

I→E E→I I→H H→I H→E E→H
Baseline
R@10 .361 .397 .348 .370 .079 .069
R@5 .249 .270 .246 .279 .040 .048
R@1 .084 .080 .071 .085 .007 .016
VGG16 (N=102)
R@10 .389 .425 .354 .389 .090 .108
R@5 .287 .315 .278 .283 .056 .059
R@1 .095 .113 .094 .096 .013 .014
Embedding (N=102)
R@10 .412 .425 .376 .390 .125 .132
R@5 .284 .310 .281 .282 .078 .078
R@1 .100 .114 .087 .102 .019 .021
Embedding (N=103)
R@10 .407 .424 .368 .391 .140 .148
R@5 .284 .315 .271 .285 .084 .089
R@1 .096 .110 .093 .105 .017 .025
Embedding (N=104)
R@10 .414 .430 .368 .414 .139 .156
R@5 .299 .321 .266 .286 .092 .091
R@1 .101 .121 .102 .093 .026 .029
[29]
R@10 .396 .425 .371 .407 .075 .077
R@5 .288 .313 .276 .282 .036 .042
R@1 .093 .094 .080 .096 .011 .007

Table 2: Retrieval recall scores on the validation set in the
aligned setting for the model trained on the English and Hindi
spoken captions [15].

I→E E→I I→H H→I H→E E→H
[15]
R@10 .475 .501 .382 .418 .235 .223
R@5 .336 .367 .295 .298 .150 .156
R@1 .113 .137 .093 .094 .049 .040

employ the output of VGG16 [43], which consists of the poste-
rior probabilities of 1,000 categories. Letting OX

i and OY
n be

the outputs for those images, we substitute the inner product of
Eq. (3) with the Jensen-Shannon (JS) divergence [44] of OX

i

and OY
n as follows:

Si,n = −JS(OX
i ,OY

n ), li = argmax
n

Si,:. (5)

The loss function is the same as Eq. (4). This method uses a
pre-trained VGG16 model.

4. Experiments
We evaluated effectiveness of the proposed method in terms
of crossmodal and cross-lingual retrieval tasks. For the ex-
periments, we prepared two disjoint combinations of bilin-
gual image-audio caption datasets: (1) English-Hindi and (2)
English-Japanese, as follows. The Places205 [45] Hindi au-
dio caption dataset [15] and Japanese audio caption dataset [17]
contain common images with their audio captions in their re-
spective languages. That is, Hindi-Japanese combination makes
an aligned dataset. Therefore, we chose 97,555 image-audio

Table 3: Recall scores on the validation set in the disjoint setting
for models trained on the English and Japanese spoken cap-
tions. [29]’s results are also reported for comparison.

I→E E→I I→J J→I J→E E→J
Baseline
R@10 .402 .433 .576 .607 .107 .080
R@5 .306 .330 .422 .485 .074 .055
R@1 .109 .116 .149 .182 .026 .019
VGG16 (N=102)
R@10 .415 .431 .553 .627 .142 .138
R@5 .296 .316 .432 .489 .087 .084
R@1 .105 .120 .150 .187 .023 .023
Embedding (N=102)
R@10 .425 .438 .578 .617 .170 .189
R@5 .310 .330 .423 .485 .109 .117
R@1 .103 .127 .154 .180 .031 .039
Embedding (N=103)
R@10 .405 .440 .582 .629 .203 .216
R@5 .299 .324 .425 .489 .122 .136
R@1 .101 .119 .158 .190 .031 .039
Embedding (N=104)
R@10 .410 .442 .574 .620 .211 .233
R@5 .295 .340 .433 .487 .121 .144
R@1 .111 .126 .156 .182 .035 .047
[29]
R@10 .396 .425 .576 .622 .089 .149
R@5 .288 .313 .414 .485 .047 .077
R@1 .093 .094 .153 .182 .010 .010

Table 4: Retrieval recall scores on the validation set in the
aligned setting for the model trained on the English and
Japanese spoken captions [15].

I→E E→I I→J J→I J→E E→J
[15]
R@10 .477 .516 .578 .639 .343 .352
R@5 .353 .402 .443 .497 .240 .234
R@1 .123 .138 .167 .201 .074 .073

pairs from both datasets, and then, we selected another sub-
set of 97,555 image-caption pairs from the Places205 English
audio caption dataset [13]. The English dataset originally con-
tains 400,000 recordings, and we randomly sampled 97,555 im-
ages so that none of those images are contained in the above-
mentioned Hindi or Japanese datasets. These two sets of dis-
joint bilingual (English-Hindi and English-Japanese) image-
audio caption datasets were used for training.

In the crossmodal retrieval task, an audio caption in one lan-
guage was considered as a query and its associated image was
the target, and vice versa. In the cross-lingual retrieval task, we
considered that the captions in one language were the queries
and those in another language associated with the same image
were the targets. To do this, we chose 1,000 quadruplets as a
validation set, each of which consisted of an image and its au-
dio captions in Hindi, Japanese, and English.

We used an image encoder that takes all layers up through
conv5 from a pre-trained VGG16 network [43]. To map the
VGG16 output into the embedding space, we applied a linear
3×3 convolution with d filters, followed by spatial mean pool-
ing. For a 224×224 pixel RGB input image, the encoder out-
puts a vector of dimension d. Our speech encoder was based
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Figure 2: Ground truth and similarity matrices between un-
pooled embeddings of English and Japanese captions. A text in
each of the languages corresponding to the audio caption is dis-
played on each axis. A text obtained by translating the Japanese
text into English is illustrated under the text in Japanese.

on DAVEnet [13], for simplicity, while it is also possible to use
ResDAVEnet [13] or other speech encoders for modeling the
temporal nature of the audio captions within a gated recurrent
unit and self-attention layer [17, 29, 40]. The audio inputs were
converted to 40 log-Mel filterbank energies with a 25-ms frame
with 10-ms shifts, and each speech encoder outputs an embed-
ding vector of dimension d obtained by temporal mean pooling.
We applied truncation and zero-padding of each spectrogram
to a fixed length of T frames (T = 2048, or approximately
20 seconds in our experiments), and then truncate the output
features of each caption to remove the frames corresponding to
zero-padding. Such pre-processing followed the one in [15].

We set the mini-batch size B and dimension d to 100 and
1024, respectively, and used a constant momentum of 0.9. The
initial learning rate was 0.001 and was decreased by a factor
of 40 every ten epochs. Our model generally converged in less
than 100 epochs.

Tables 1 and 3 show the crossmodal and cross-lingual re-
trieval recall scores in the disjoint settings at ranks 1, 5, and
10. We refer to the case of training on only the disjoint data as
the baseline, where the loss function does not include the cross-
lingual terms. Tables 2 and 4 list the recall scores in the aligned
settings [15], where we used 97,555 image-caption quadruples
for training that consist of the English, Hindi and Japanese au-
dio captions associated with the same images. “English cap-
tion” is abbreviated as E, “Hindi caption” as H, “Japanese cap-

Table 5: Cross-lingual word-to-word retrieval recall scores.
“English word” is abbreviated as E and “Japanese word” as
J.

J→E E→J
Baseline .424 .382
Embedding (N=103) .473 .419
Havard et al. [29] .180 .169
Harwath et al. [15] (aligned) .481 .432

tion” as J, and “Image” as I. It is natural that the best scores
came from training on the aligned dataset, but it is shown that
our method achieved an accuracy closer to them without using
the aligned data. It is also shown that using the image embed-
ding vectors to expand positive pairs results in a better perfor-
mance than using the image similarity based on VGG16 vec-
tors, and the accuracy tends to be improved by increasing N .
Tables 1 and 3 also list the results from the method proposed
in [29], where we used 2,000 images as pivots to link the dis-
joint embedding spaces. In our experimentation, our method
outperformed [29]. We consider this may indicate that the mul-
tilingual embedding model is more suitable than linking multi-
ple individually-trained models after the training.

We further examined whether word-level translation align-
ments were being learned using English and Japanese spoken
caption pairs associated with the same images. First, 100 En-
glish and Japanese caption pairs were randomly selected from
the validation set, and the bilingual word alignment was man-
ually annotated as ground truths. Then, the matrix product of
the outputs before the temporal mean pooling of the speech en-
coders for the English and Japanese captions was computed as
a similarity matrix, where the regions of high similarity indi-
cate the correspondence between the underlying words. Figure
2 compares the ground truth and the similarity matrices in the
different settings. It can be seen that our method with N =103

and [15] result in less noise and a clearer alignment in the simi-
larity matrices. It is interesting that “観覧車 (Ferris wheel)” and
“trucks”, which are similar in a generic concept, are aligned
to each other in our method. Next, we computed Recall@1
when searching for the labeled word segments in one language
from those in another language in the similarity matrix. Table 5
shows that our method improved word-to-word retrieval perfor-
mance compared with training on only the disjoint data.

5. Conclusion
We proposed a pair expansion method for crossmodal and cross-
lingual semantic embeddings using multiple monolingual im-
age and audio caption datasets where no images are shared
across different languages. The method finds an image-audio
caption pair and utilizes it in the learning process. Experiments
using the crossmodal and cross-lingual retrieval tasks showed
that the use of the expanded pairs clearly improves the accu-
racy. In particular, the method measuring the image similar-
ity in the embedding space in the training process, called the
embedded vector-based method, does not depend on any exter-
nal data or models, such as object recognition, speech recog-
nition, or machine translation. We hope this will enable us to
fully utilize the monolingual resources in multilingual learn-
ing. Our future work will include examining the effectiveness
of the proposed method with partially aligned datasets and dis-
joint datasets drawn from different image sources other than
Places205 dataset.

1489



6. References
[1] A. Jansen, K. Church, and H. Hermansky, “Toward spoken term

discovery at scale with zero resources,” in Proc. INTERSPEECH,
2010.

[2] A. Park and J. Glass, “Unsupervised pattern discovery in speech,”
IEEE Transactions on Audio, Speech and Language Processing,
vol. 16, pp. 186–197, 2008.

[3] H. Kamper, A. Jansen, and S. Goldwater, “Unsupervised word
segmentation and lexicon discovery using acoustic word embed-
dings,” IEEE Transactions on Audio, Speech and Language Pro-
cessing, vol. 24, pp. 669–679, 2016.

[4] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in Proc. NIPS,
2016.

[5] H. Nakayama and N. Nishida, “Zero-resource machine translation
by multimodal encoder-decoder network with multimedia pivot,”
Machine Translation, vol. 32, pp. 49–64, 2017.

[6] A. Owens and A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” in Proc. ECCV, 2018.
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