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Abstract
Automatic dubbing aims at replacing all speech contained in
a video with speech in a different language, so that the result
sounds and looks as natural as the original. Hence, in ad-
dition to conveying the same content of an original utterance
(which is the typical objective of speech translation), dubbed
speech should ideally also match its duration, the lip movements
and gestures in the video, timbre, emotion and prosody of the
speaker, and finally background noise and reverberation of the
environment. In this paper, after describing our dubbing archi-
tecture, we focus on recent progress on the prosodic alignment
component, which aims at synchronizing the translated tran-
script with the original utterances. We present empirical results
for English-to-Italian dubbing on a publicly available collec-
tion of TED Talks. Our new prosodic alignment model, which
allows for small relaxations in synchronicity, shows to signif-
icantly improve both prosodic alignment accuracy and overall
subjective dubbing quality of previous work.
Index Terms: speech translation, text to speech, automatic dub-
bing.

1. Introduction
Professional dubbing [1] is a complex and labor intensive pro-
cess that involves many steps, roughly summarized by: extract-
ing speech segments from the audio track and annotating these
with speaker information; transcribing the speech segments;
translating the transcript in the target language; adapting the
translation for synchronization; casting the voice talents; per-
forming the dubbing sessions; fine-aligning the dubbed speech
segments; and, finally, mixing the new voice tracks within the
original soundtrack. Adapting a translation for dubbing consid-
ers three types of synchronization [2]: (i) phonetic synchrony,
which consists in adapting the translation to the articulatory
movements of the performer on the screen, (ii) kinetic syn-
chrony, which consists in producing a translation that is tempo-
rally consistent with the performer’s body movements, (iii) and
isochrony, the most critical form synchronization of dubbing1

and the focus of our work, which consist in arranging the trans-
lation into phrases so that the voice talent can closely match the
start and end points of the performer’s speech activity, while
preserving fluency and the original speaking rate.

This paper builds on the automatic dubbing architecture
presented in [3] (Figure 1) that extends a speech-to-speech
translation [4, 5, 6] pipeline 2 with: neural machine transla-
tion (MT) robust to ASR errors and able to control verbosity
of the output [9, 10, 11]; prosodic alignment (PA) [12] which
addresses isochrony by leveraging temporally segmented ASR
output; neural text-to-speech (TTS) [13, 14, 15] with precise

1Poorly dubbed movies are often grounded in poor isochrony [2].
2While end-to-end neural models look appealing and versatile [7,

8], we choose a modular approach to also explore the integration of
automatic and human dubbing.

Figure 1: Speech-to-speech translation pipeline (dotted box)
with enhancements to perform automatic dubbing (in bold).

duration control; audio rendering that enriches TTS output with
the original background noise (extracted via audio source sepa-
ration with deep U-Nets [16, 17]) and reverberation, estimated
from the original audio [18, 19]. In [3], we also run a sub-
jective evaluation of the naturalness of 25 video clips of TED
Talks, extracted from the MUST-C [20] corpus, automatically
dubbed from English to Italian. Results confirmed what already
reported in [12]: perceived dubbing quality significantly drops
when PA splits the translation into phrases that, due to the re-
quired time boundaries, result in TTS speech that is either too
slow, too fast, or too uneven across consecutive phrases.

In this paper we discuss an improved version of the PA
model presented in [3] that, while segmenting the translation to
optimally match the speaking rate of the original phrases also
allows for small and tolerable relaxations of isochrony[2] for
the sake of avoiding unnatural TTS output. In the following
sections, we provide background knowledge about automatic
dubbing, introduce our new PA model, present a speech dub-
bing data set and objective metrics to evaluate PA, and present
and discuss results of an automatic and a subjective evaluation
of our new approach.

2. Background
There is relatively little work on automatic speech dubbing and
mostly tackling the problem as replacing natural speech with
synthetic speech in the same language. In [21], natural and
synthetic speech are time-aligned at the frame level with a dy-
namic time warping algorithm. Similarly, in [22, 23] speech
generated from subtitles is aligned to the original audio track
by shortening the length of the script, with fine-grained con-
trol of the duration of TTS, and relaxation of the timing con-
straints given by the subtitles. A completely different approach
to address cross-lingual phonetic synchrony is proposed in [24]
by directly manipulating the video showing the actor’s mouth.
The work that pioneered cross-lingual synchronization at the
phrase/utterance level (isochrony) is [12], which introduces the
concept of prosodic alignment. Starting from a transcript of the
original audio, annotated with temporal phrase-boundaries, and
output from a neural MT model, the PA model aligns the trans-
lation to the source phrases by leveraging the attention weights
of the neural MT model. More recently, we proposed a PA
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source: ”He asked Octavio”
start-end: 0.78s - 1.35s

target: ”Chiese a Octavio”
source: ”to be his chief of staff.”

start-end: 1.87s - 3.24s
target: ”di fargli da capo del personale.”

Table 1: Example of prosodic alignment.

model [3] which does not require cross-lingual information, but
guides the search for the optimal alignment with two types of
information: the speaking rate match between corresponding
source-target phrases and the linguistic plausibility of the cho-
sen split points. In particular, the speaking rate match is directly
computed at the string level and the linguistic plausibility of a
break point (pause) is evaluated with a language model.

3. Prosodic Alignment
Given the source sentence/utterance: ”He asked Octavio to be
his chief of staff”, temporally segmented as in Table 1, and its
Italian translation ”Chiese a Octavio di fargli da capo del per-
sonale”, the goal of prosodic alignment is to segment the target
sentence in a way to optimally match the sequence of phrases
and pauses of the source sentence. Let e = e1, e2, . . . , en be a
source sentence of n words, segmented according to k break-
points 1 ≤ i1 < i2 < . . . ik = n, shortly denoted with i.
Let the temporal duration of e be T and the temporal inter-
vals of the segmentation i be s1 = [l1, r1] , . . . , sk = [lk, rk],
shortly denoted by s, s.t. l1 ≥ ∆ε, li < ri, li+1 − ri ≥ ∆ε,
T − rk ≥ ∆ε, where ∆ε is the minimum silence interval af-
ter (and before) each break point.3 Given a target sentence
f = f1, f2, . . . , fm of m words, the goal is to find k breakpoints
1 ≤ j1 < j2 < . . . jk =m (shortly denoted with j) that maximize
the probability:

max
j

log Pr(j ∣ i,e, f , s) (1)

By assuming a Markovian dependency on j, i.e.:

Pr(j ∣ i,e, f , s) =
k

∑
t=1

log Pr(jt ∣ jt−1; t, i,e, f , s) (2)

and omitting from the notation the constant terms i,e,f and s
we derive the following recurrent quantity:

Q(j, t) = max
j′<j

log Pr(j ∣ j′; t) +Q(j′, t − 1) (3)

where Q(j, t) denotes the log-probability of the optimal seg-
mentation of f up to position j with t break points. How-
ever, this model implicitly assumes that corresponding source
and target segments, defined by i and j, have exactly the same
duration (isochrony), defined by s. We instead relax this con-
straint by actually allowing target segments to possibly extend
the source interval by some fraction of ∆ε to the left and to the
right, which we call δl and δr such that δl, δr ∈ {0, 1

4
, 2
4
, 3
4
, 4
4
}.

Hence, the idea is to extend the search to solutions that can pos-
sibly relax the isochrony constraint. Thus, we optimize,

Q (j, δl, δr; t) = max
j
′
<j ∶ δ

′

r≤1−δl

log Pr (j, δl, δr ∣ j
′

, δ
′

l , δ
′

r; t) +Q (j
′

, δ
′

l , δ
′

r; t − 1) (4)

3In this work the minimum silence interval ∆ε is set to 300ms.

e, f source and target word sequences
i, j word positions in e and f
k number of breakpoints in e
i,j sequences of k breakpoints in e and f
t index over segments in e and f

ẽt, f̃t source and target phrases of t-th segment
st original temporal interval of t-th source segment
s∗t relaxed temporal interval of t-th target segment

re(t) speaking rate of source phrase ẽt in interval st
rf(t) speaking rate of target phrase f̃t in interval s∗t
δl, δr left and right relaxations in the range 0, 1

4
, 1
2
, 3
4
,1

Table 2: Notation

Where nowQ is the score of the optimal segmentation into t
segments up to position j, with relaxations δl, δr on the last seg-
ment. Hence, not only different breakpoints j for the t-segment
are evaluated, but also relaxations of the original time interval
st = [lt, rt], to the right by δr∆ε and to the left by δl∆ε. We
denote the relaxed interval by s∗t . The constraint δ′r ≤ 1 − δl
in (4) makes sure that the left relaxation of segment t does not
overlap with the right relaxation of segment t − 1.
We define the model probability in (4) with a log-linear model:

log Pr (j, δl, δr ∣ . . . ; t) ∝
4

∑
k=1

wa log sa (j, δl, δr, . . . ; t)

(5)
where weights wa are learned from data and feature functions
sa model the following aspects:

1. Speaking rate variation across target segments

2. Speaking rate match across source and target

3. Isochrony score for left and right relaxations

4. Language model score of target break point

Speaking rate computations rely on the strings f̃t and ẽt, com-
posing the t-th source and target segments, as well as the origi-
nal interval st and the relaxed interval s∗t . Hence, the speaking
rate of a source (target) segment is computed by taking the ra-
tio between the duration of the utterance by source (target) TTS
run at normal speed and the source (target) interval length,4 i.e:

re(t) =
duration(TTSe(ẽt))

∣st∣
(6)

rf(t) =
duration(TTSf(f̃t))

∣s∗t ∣
(7)

3.1. Speaking rate variation

By abusing the notation in (5), we define the speaking-rate vari-
ation ssv(⋅) between consecutive target segments by:

ssv (f̃t, s∗t , f̃t−1, s∗t−1; t) = 1 − ∣rf(t) − rf(t − 1)∣
rf(t − 1) . (8)

The objective of this feature is to penalize sentence split that
generate TTS speech with speaking rate varying too much
across consecutive segments. This feature reaches the maxi-
mum when consecutive segments have the same speaking rate
and is activated starting from the second segment (t ≥ 2).

4We run TTS on the entire sentence, force-align audio with text [25,
26] and compute segment duration from the time-stamps of the words.
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3.2. Speaking rate match

We define the speaking-rate match ssm(⋅) between correspond-
ing source and target segments by:

ssm (ẽt, f̃t, st, s∗t ; t) = 1 − ∣rf(t) − re(t)∣
re(t)

(9)

The rationale of this feature is to favor sentence splits that gen-
erate TTS utterances that closely track the speaking rate of the
original audio. This feature reaches its maximum when the tar-
get and source speaking rates are identical. It complements the
previous feature by (i) rewarding speaking rate variations in the
target that are also present in the source and (ii) penalizing lack
of variations in the target speaking rate when such variations are
indeed present in the source. Empirically, we found beneficial
regularizing re(t) by clipping it to the range 60%-140%.

3.3. Isochrony score

We define the isochrony score sis(⋅) for relaxations δl, δr , as:

sis(δl, δr) = 1 − [α δl + (1 − α) δr] (10)

This feature reaches its maximum when no relaxation occurs
(δr = δl = 0), that is when the TTS output is stretched to ex-
actly fit the duration of the original utterance. On the other
hand, when some relaxation is useful to reduce the TTS speak-
ing rate, the score penalizes left boundary relaxations more that
right boundary relaxations. In fact, we empirically observed
that small relaxations of isochrony in dubbed videos are more
tolerable after the actress stops speaking than before the actress
starts speaking. (Our observation is also confirmed in [2]). We
thus set α, so that left relaxation is always penalized more than
right relaxation, i.e.:

αδl > (1 − α)δr ∀δr, δl ∈ {0,
1

4
,
2

4
,
3

4
,1} (11)

which is satisfied by α > 4
5

.

3.4. Language model

The language model score slm(⋅) estimates the probability of a
break between the target strings f̃t−1 and f̃t [3] by:

slm(j, f̃t−1, f̃t) = Pr (br∣f̃t−1, f̃t) (12)

=
p (f̃t−1, br, f̃t)

p (f̃t−1, br, f̃t) + p (f̃t−1, f̃t)

We found convenient mapping words to part-of-speech, lever-
aging a part-of-speech 3-gram language model (details in Sec-
tion 5) and to map the break symbol br to a punctuation-class
denoting a pause, which includes period, comma, column and
semicolon. This simple feature, which is also used in our previ-
ous PA model [3], represents a reasonable starting point while
investigating more advanced prediction models [27, 28].

4. Evaluation Data and Metrics
For training and evaluation purposes we extracted and anno-
tated 120 video clips from 20 TED talks of the MUST-C test
set, containing exactly one sentence with one or more pauses of
at least 300ms. 5 For each clip we time aligned the English

5Detected by force-aligning original English audio with text [25].

transcript with the audio and manually adapted and segmented
the available Italian translations to fit the duration and segmen-
tation of the corresponding English utterances (see example in
Table 1). This process required more than one iteration, each
ending with a dubbing step to assess the quality of the manually
generated PA. The annotation process resulted in a total of 120
sentence pairs containing at least one break point, for a total
of 187 breakpoints and 307 segments. Hence, we defined the
following PA quality metrics for a set of sentences:

Accuracy is the percentage of sentences for which the PA
segmentation coincides with the manual reference. We implic-
itly assume that missing one correct break point inside a sen-
tence with multiple breakpoints does compromise the PA qual-
ity of the entire sentence.

Fluency is the percentage of sentences having TTS speaking
rate for all segments in the range 60%-140%. We expect that
segments with speaking rate outside this range might result in
low fluency.

Smoothness measures the stability of the TTS speaking rate
across all contiguous target segments:

⟨1 − ∣rf(t) − rf(t − 1)∣
rf(t − 1) ⟩ , (13)

where ⟨.⟩ denotes the average over all segment pairs.

5. Experiments
Both our new and previous [3] PA model require estimating a
part-of-speech language model (LM) feature as well as weights
for all their features. We mapped target language word se-
quences into part-of-speech sequences with an online service6,
and estimated a 3-gram POS LM on the training portion of the
MUST-C corpus [20] with the KENLM toolkit [29]. Regarding
feature weights, the model in [3], in short model A, requires es-
timating weights for a speaking rate matching feature ssr (based
on character counts), and a language model feature slm, iden-
tical to the one discussed above. For our new PA model, we
are interested in performing experiments without and with re-
laxation (isochrony feature), which we call model B and model
C. We optimize feature weights of each PA model over accu-
racy by applying a hierarchical grid search 7 with the following
nested convex combinations of feature pairs: 8

A: (slm, ssm)wlm

B: (slm, (ssm, ssv)wsm)wlm

C: (sis, (slm, (ssm, ssv)wsm)wlm
)
wis

Note that for model C, we start from the weights of B, and set
the weight of the isochrony feature to the minimum value pro-
viding the highest Accuracy, so to maximize its use.

In order to make optimal use of our 120 annotated sen-
tences, we apply a 5-fold cross-validation scheme [30] for esti-
mating and evaluating each PA model. Hence, we partition the
data into 5 sets of 24 sentences by applying stratified sampling
on the number of contained breakpoints.

6https://aws.amazon.com/comprehend.
7To simplify search and run initial ablation tests across models.
8Where (a, b)θ ∶= θa + (1 − θ)b with θ ∈ [0.1]
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Automatic A B C R
Accuracy 49.17% 65.83% * 71.67% ** 100%
Fluency 54.17% 71.67% ** 89.17% ** 68.33%
Smoothness 65.74% 81.33% ** 87.40% ** 73.15%

Manual A vs. C C vs. R
Wins 28.5% 45.6% ** 29.3% 36.9% **
Score 4.72 5.10 ** 5.20 5.39 *

Table 3: Automatic and manual evaluations with three prosodic
alignments: (A) previous work [3], (B) new model without re-
laxation, (C) new model with relaxation, (R) manual reference.
Test sets are made of 120 sentences and 50 video clips, re-
spectively. Significance testing on automatic metrics is against
model A, with levels p < 0.05 (*) and p < 0.01 (**).

5.1. Automatic Evaluation

For each PA model and evaluation metric we report the aver-
age value on the 120 sentences. Results are reported in the
upper section of Table 3. For models B and C we report sta-
tistical significance against model A by applying randomized
paired permutation tests [31]. We observe that model B im-
proves significantly over the baseline model A for all metrics
(+33.9% relative in Accuracy, +32.3% in Fluency, +23.7% in
Smoothness) confirming that even w/o relaxation the new scor-
ing function already improves the previous model. Gains in
Fluency and Smoothness seem to prove that model B can com-
pute more accurate source-target duration matches and directly
control speaking rate variations in the scoring function.

Comparison of A with the full model with relaxation (C),
shows further gains across the board: +45.8% relative in Accu-
racy, +64.6% in Fluency and +32.9% in Smoothness, all sta-
tistically significant (p < 0.01). Further improvements in Flu-
ency and Smoothness can be attributed to the ability of model
C to lower too high speaking rates through the relaxation mech-
anism. Gains in Accuracy over model B are also due to the in-
creased flexibility of model C in determining the optimal break-
points, thanks to the relaxation mechanism. Finally, it is worth
noticing that the reference segmentation (R) generates PA with
lower Smoothness and Fluency than models B and C. We will
discuss this aspect in the next subsection.

5.2. Manual Evaluation

We run a manual evaluation on a subset of 50 test sentences, se-
lected among those with the highest number of breakpoints and
such that A and C generate different PA (segmentation and time
intervals). For each sentence and the corresponding video clip,
we generated dubbed videos with the architecture described in
the Introduction, by applying PA with A, C and R, followed
by neural text-to-speech, background noise re-insertion and ri-
reverberation. We asked Italian speaking subjects to blindly
grade their viewing experience of each dubbed video on a scale
from 0 to 10. To make the cognitive load of the task accept-
able, we run two distinct experiments, each comparing video
clips dubbed under two conditions: A vs. C and C vs. R. The
two evaluations were run each with 20 subjects from Amazon
Mechanical Turk, and collected a total of 2,000 scores.

For each experiment, we measured the percentage of times
one condition was preferred over the other (Wins) together with
its statistical significance [31]. We also measured the effect of

each PA model on human scores using a linear mixed-effects
model9 (LMEM), by defining subjects and sentences as random
effects [33]. Results are summarized in Table 3.

In the first experiment, model C clearly outperforms model
A both in terms of Wins (+60% relative, p < 0.01) and Score
(+8% relative, p < 0.01). The second experiment, comparing
C vs. R shows smaller differences in Wins ( −10.6% relative,
p < 0.01) and Score (−3.5% relative, p < 0.05).10

Interestingly, model A and the reference (R) generate a seg-
mentation by just looking at the source and target strings, but
clearly humans are better at using this information to predict
the duration of phrases and at guessing where to insert pauses.
Model C, reduces the gap of A with more accurate predictions
and with some tolerance in the time boundaries, which actu-
ally contributes both to increase the overall accuracy and the
smoothness of the speaking rate. For model C, we also mea-
sured with LMEM the effect of relaxation on human Score.
As relaxation is introduced at the segment level and sentences
might include multiple segments, we consider both the max-
imum and total amount of relaxation introduced at the single
sentence. For both effects, no statistical significant impact on
Score was measured (p < 0.225 and p < 0.073, respectively).

By comparing manual and automatic scores in Table 3, it
is clear that out of the three automatic metrics, Accuracy is
the most relevant for final dubbing quality. We evaluated with
LMEMs the impact of each automatic score on the human score
with all data points, using subjects, sentences and systems as
random effects. We found that only Accuracy has a statistically
significant impact (p < 0.001). Notice that Accuracy of A and
C on the manual evaluation are respectively of 30% and 83%. If
we restrict the analysis on data of system C, we found that both
Accuracy and Smoothness have statistically significant impact
(p < 0.001), while Fluency has not. Our intuition is that our
current definition of Fluency (=speaking rate falls in the range
[0.6,1.4]) should be probably narrowed or defined on a contin-
uous range.

Finally, though not the main goal of this study, from com-
ments left by our subjects, we ascertain that text-to-speech voice
quality is an important factors that needs further improvement,
for instance in the case of slow speaking rate or when the
speaker makes many pauses. This explains why the scores of
system R are on average low.

6. Conclusion

We presented and evaluated a new prosodic alignment model for
automatic speech dubbing. The new model, in addition of seg-
menting a target language sentence to fit the timing of the cor-
responding multiple utterances in the original audio, includes
some small relaxation of the time boundaries. We empirically
observe that the addition of relaxations permits to significantly
increase the accuracy of the segmentation as well as the smooth-
ness and fluency of the generated text-to-speech. Manual eval-
uations, show that segmentation accuracy is the primary factor
for quality on which we should focus on. Future work will be
devoted to improve the quality and realism of text-to-speech,
especially when specific speaking styles have to be mimicked.

9We used the lme4 package for R [32].
10The difference in Score of C across the two experiments is likely

due to the absence of a common reference anchor [34].
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