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Abstract
Self-supervised learning from raw speech has been proven

beneficial to improve automatic speech recognition (ASR). We
investigate here its impact on end-to-end automatic speech
translation (AST) performance. We use a contrastive predic-
tive coding (CPC) model pre-trained from unlabeled speech as a
feature extractor for a downstream AST task. We show that self-
supervised pre-training is particularly efficient in low resource
settings and that fine-tuning CPC models on the AST training
data further improves performance. Even in higher resource
settings, ensembling AST models trained with filter-bank and
CPC representations leads to near state-of-the-art models with-
out using any ASR pre-training. This might be particularly ben-
eficial when one needs to develop a system that translates from
speech in a language with poorly standardized orthography or
even from speech in an unwritten language.
Index Terms: self-supervised learning from speech, automatic
speech translation, end-to-end models, low resource settings.

1. Introduction
Self-supervised learning using huge unlabeled data has been ex-
plored with very promising results for image processing [1] and
natural language processing [2]. Recent works investigated self-
supervised representation learning from speech [3, 4, 5]. They
were successful to improve performance on downstream tasks
such as speech recognition. These recent works suggest that it
is possible to reduce dependence on labeled data for building
speech systems through acoustic representation learning. We
investigate the possibility to leverage unlabeled speech for end-
to-end automatic speech translation (AST). We focus on scenar-
ios where (a) recordings in source language are not transcribed1

(no ASR pre-training is possible), (b) only a small-medium
amount of training data (speech aligned to translations) is avail-
able, (c) a larger amount of unlabeled speech can be used. This
scenario is typical of situations when one builds a system that
translates from speech in a language with poorly standardized
orthography or even from an unwritten language.

In summary, our contributions are: (1) we propose an in-
depth study on the impact of self-supervised pre-training for
AST, (2) we show that fine-tuning pre-trained representations
on the AST training data is beneficial and that self-supervised
pre-training is particularly efficient in low resource settings,
(3) even in high resource settings, ensembling models trained
with filter-bank and self-supervised representations leads to
near state-of-the-art models without using ASR pre-training, (4)
we analyze the representations learnt and show that they allow
to better discriminate phones, better align source and target se-
quences, and are more robust to speaker variability.

1Transcription not available or language poorly written.

2. Related Works
2.1. Self-supervised learning from speech

Self-supervised learning from speech consists in resolving
pseudo-tasks not requiring human annotations as a pre-training
to the real tasks to solve. These pseudo-tasks target predicting
next samples or solving ordering problems. Autoregressive pre-
dictive coding (APC) [6, 7] considers the sequential structure of
speech and predicts information about a future frame. An easier
learning objective is introduced in Contrastive Predictive Cod-
ing (CPC) which consists in distinguishing a true future audio
frame from negatives [3, 8, 9]. [5] shows that such representa-
tions are useful to improve several speech tasks while [4] ex-
tends those works by looking at the representations’ robustness
to domain and language shifts. In the same vein, [10] compares
self-supervised and supervised pre-training for ASR and shows
that CPC pre-training extracts features that transfer well to other
languages, being on par or even outperforming supervised pre-
training. Another promising way is to use speech enhancement
as a task for feature representation learning [11, 12]. Finally,
several self-supervised tasks can be jointly tackled to discover
better speech representations [13].

2.2. End-to-end Automatic Speech Translation

Previous automatic speech-to-text translation (AST) systems
operate in two steps: source language automatic speech recog-
nition (ASR) and source-to-target text machine translation
(MT). However, recent works have attempted to build end-to-
end AST without using source language transcription during
learning or decoding [14, 15] or using it at training time only
[16]. Recently several extensions of these pioneering works
were introduced: low resource AST [17], unsupervised AST
[18], end-to-end speech-to-speech translation (Translatotron)
[19], multilingual AST [20]. Improvements of end-to-end AST
were also proposed using weakly supervised data [21] or adding
a second attention mechanism [22]. While supervised pre-
training for AST was investigated (see for instance [16]), we
are aware of a single research group [5, 7] that investigated self-
supervised pre-training for AST. However their experiments
were done in a high resource setting and AST (for which only
marginal gains were displayed) was solely investigated among
other tasks, without an in-depth analysis of the representations
learnt.

3. Self-supervised Pre-training from Speech
3.1. Contrastive predictive coding model

We use the self-supervised pre-training model introduced in [8]
(wav2vec) which is based on contrastive predictive coding. The
model uses (1) an encoder network that converts the audio sig-
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Table 1: Statistics of different How2 data partitions.

Partition #segments #hours #src words #tgt words
10% 17,751 28 313K 295K
20% 35,858 56 626K 591K
30% 53,698 84 887K 940K
60% 107,676 169 1778K 1883K
full 179,438 281 2963K 3139K

nal into a latent representation (from raw speech samples x into
a feature representation z), and (2) a context network that aggre-
gates multiple time steps to build contextualized representations
(from a sequence zi−v, ..., zi into a context vector ci).2 The full
model (encoder+context) is trained end-to-end to distinguish a
sample zi+k that is k steps in the future from negative samples z̃
uniformly chosen from the same audio sequence. A contrastive
loss is minimized for each step k = 1, ...,K and the overall
loss is summed over different step sizes (more details in [8]).

3.2. Pre-trained models for English

We use an off-the-shelf model provided for English.3 It is
trained on Librispeech corpus [23]. We also investigate if fine-
tuning the model on our task specific data is beneficial. For
this, we fine-tune wav2vec on the full speech corpora used for
our AST experiments (see next section). It is important to note
that no transcripts nor translations are needed for this step which
requires only raw speech. After fine-tuning wav2vec, we input
the representations produced by the context network ci to the
AST encoder instead of filter-bank features (see Figure 1).

4. End-to-end Speech Translation
Experiments

4.1. Experimental setup

4.1.1. Data

How2 corpus [24] is used for our main experiments. This cor-
pus contains about 297.6 hours of speech, which is transcribed
and translated into 3.3 million of English words and 3.1 million
of Portuguese words respectively.4 From this version of data,
we first filter out too long sentences (sentences longer than 30
seconds or 400 characters). Then, in order to simulate lower
resource scenarios, we randomly split the corpus into four sub-
corpora of roughly 10%, 20%, 30%, and 60% of the filtered
full corpus. Our splits guarantee that smaller partitions are fully
included in the bigger ones. The statistics of all the partitions
and the filtered version of full corpora can be found in Table 1.

4.1.2. Speech features and data augmentation

As shown in Figure 1, we extract either wav2vec features or
filter-bank+pitch features (later denoted as fbanks) from speech
input.5 Depending on the experiments, mean and variance nor-
malization (MVN) is optionally applied to the generated fea-
tures. For wav2vec feature extraction, we either use an off-

2Practically each zi encodes 30ms of speech every 10ms. As for
ci, the total receptive field of the context network is 210ms.

3https://github.com/pytorch/fairseq/blob/
master/examples/wav2vec/

4Note that these statistics were measured on our version of How2
downloaded on July 12, 2019 [25].

5Our preliminary experiments on How2 10% with MFCC features
which lead to similar performance as filter-bank are not presented here.
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Figure 1: Architecture of the speech encoder: a stack of two
VGG blocks followed by 5 BLSTM layers. We use as input (1)
wav2vec features (that pass through an additional projection
layer to reduce their dimension from 512 to 83), or (2) filter-
bank+pitch features. The input features are optionally normal-
ized (MVN).

the-shelf model trained on LibriSpeech [23] or a model fine-
tuned on How2 training set. MVN parameters are estimated
on the speech translation training set and then applied to all
train/dev/test sets. Overall, we have 4 different self-supervised
representations named wav2vec, wav2vec + norm, wav2vec +
FT (fined-tuned wav2vec) and wav2vec + FT + norm. All those
wav2vec features are of dimension 512. We compare the above
representations to conventional filter-bank features. Similar to
[25], we extract 80-dimensional Mel filter-bank features, con-
catenated with 3-dimensional pitch features from windows of
25ms, and a frame shift of 10ms. MVN is used in the same
manner as for wav2vec features. This gives us 2 additional
speech representations named fbanks and fbanks + norm re-
spectively (their dimension is 83).6 Data augmentation through
speed perturbation is also applied with factors of 0.9, 1.0, and
1.1 to the training data. We reuse the development set of our
participation to the previous IWSLT2019 [25] (1, 984 sentences
randomly excluded from the training set). How2 val set is used
as our test data. As for target text processing, we normalize
punctuation marks, and tokenize the text into character-level us-
ing Moses script.7

4.2. Speech-to-text translation model

4.2.1. Architecture.

We use an attention-based encoder-decoder architecture, whose
encoder is illustrated in Figure 1. The encoder is a stack of two
VGG-like [26] CNN blocks followed by five 1024-dimensional
BLSTM layers. Each VGG block contains two 2D-convolution
layers just before a 2D-maxpooling layer, which aims to reduce
both time (T ) and frequency dimension (D) of the input speech
features by a factor of 2. These two VGG blocks transform
input speech features’ shape from (T × D) to (T/4 × D/4).
Bahdanau’s attention mechanism [27] is used in all our experi-
ments. The decoder is a stack of two 1024-dimensional LSTM
layers. This model performed well at the IWSLT2019 E2E AST
track [25], thus it is completely reused for all the experiments

6For the rest of the paper fbanks will actually mean filter-bank+pitch
7https://github.com/moses-smt/mosesdecoder.
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Table 2: Detokenized case-sensitive BLEU scores measured on How2 val set of different models trained on different partitions of How2
corpus (EN-PT) with different speech features. FT means fine-tuned and norm stands for MVN normalization.

No. Feature 10% (28h) 20% (56h) 30% (84h) 60% (169h) 100% (281h)
1 wav2vec 11.33 26.75 30.83 36.33 41.02
2 wav2vec + FT 12.52 27.30 32.11 37.78 42.32
3 wav2vec + norm 16.52 27.33 31.27 37.62 41.08
4 wav2vec + FT + norm 18.50 27.68 32.17 37.75 41.30
5 fbanks 1.03 18.61 27.32 37.23 41.63
6 fbanks + norm 2.11 24.58 30.21 37.56 42.51
7 Ensemble [5, 6] 25.28 31.90 40.39 44.35
8 Ensemble [4, 6] 29.87 34.67 41.22 45.02
9 Ensemble [1,2,3,4,5,6] 31.88 36.80 42.62 46.16

with fbanks features presented throughout this paper. However
wav2vec features have higher dimension (512) than fbanks (83).
In order to compare both input representations with a similar
parameter budget in the architecture (and also because training
an architecture with input features of dimension 512 would be
more computationally expensive), we add a projection block at
the bottom of the encoder.8 This block (containing a linear layer
followed by a ReLU) reduces the wav2vec’s feature size from
512 to 83 (see Figure 1).

4.2.2. Hyperparameters’ details

Models are trained in maximum 20 epochs with early stopping
after 3 epochs if the accuracy on the dev set does not improve.
Adadelta is chosen as optimizer and dropout is set to 0.3 on the
encoder side. We decode all our models with beam size of 10.

4.3. Experimental results on How2

On each partition of How2 corpus, we train 6 models which
take as input different speech representations presented in sec-
tion 4.1.2, thus in total 30 models shown in Table 2. We evalu-
ate on How2 val set, which contains 2, 022 segments (about 3.2
hours of speech), in the same conditions as our participation to
IWSLT 2019 shared task. It is clear from the table that in low
resource settings (28 and 56 hours), self-supervised representa-
tions (wav2vec) significantly outperform fbanks. Figure 2a con-
firms this and shows that models trained with wav2vec represen-
tations converge better and faster. The impact of normalization
and fine-tuning is also notable from both Table 2 and Figure
2a. In very low resource settings (like 28 hours), fine-tuning
wav2vec can greatly help, and with normalization, the perfor-
mance further improves. In higher resource settings (169 and
281 hours of translated speech), differences between wav2vec
and fbanks fade away (and so does the impact of fine-tuning
and normalization). However, our ensembling experiments of
lines 7 and 8 on 100% of How2 show that it is beneficial to
ensemble the best system (fbanks+norm, line 6) with a system
trained with wav2vec (wav2vec+FT+norm, line 4) rather than
a better model (fbanks, line 5) also based on filter-bank fea-
tures, even though wav2vec+FT+norm underperforms fbanks
on this partition. Ensembling all our models (line 9) leads to
BLEU > 30 even in very low resource training conditions (56
hours). Finally, in order to compare ourselves with the state-
of-the-art [28], we decode How2 dev5 (a.k.a How2 test), which

8Our implementation of the wav2vec speech encoder, as well as the
detailed recipes for our experiments can be found online: https://
github.com/mhn226/espnet/tree/interspeech2020.

(a) How2 10% (28 hours) (b) How2 20% (56 hours)

Figure 2: Learning curves (accuracy) of models trained on dif-
ferent partitions of How2.

consists of 2, 305 segments (about 3.7 hours of speech), using
the ensemble of all our models trained on the full corpus (line
9). This gives us near state-of-the-art BLEU: we obtain 46.16
on How2 val and 47.17 on How2 dev5. This latter score on
dev5 is to be compared with 48.04 reported with an ensemble
model in [28] where ASR and MT pre-training were used, as
well as data augmentation with SpecAugment.

4.4. Validation on two other language pairs

To validate our results in low resource settings (56 and 84
hours), we train our models on two subsets of MuST-C [20]
English-to-German and English-to-French training data (56 and
84 hours each, a training size similar to How2 20% and 30%).
As illustrated by Table 3, MuST-C is more challenging than
How2 (as confirmed by official IWSLT 2019 evaluation results
[29]), but for both language pairs, wav2vec significantly outper-
form fbanks. This confirms that self-supervised pre-training is
useful in low resource scenarios.

5. Analysis of Learnt Representations
This section tries to answer the question why wav2vec represen-
tation performs better than filter-bank features . The following
subsections present the experiments which show that wav2vec
might be (1) better at discriminating phones, (2) better at align-
ing source and target sequences, and (3) more robust to speaker
variability.

5.1. Better phone discrimination

We first replicate an experiment from [8] for phoneme recogni-
tion on TIMIT [30]. Speech representations are extracted from
train, dev and test split of TIMIT. A simple attentional encoder-
decoder model is used: encoder with 4 BLSTM layers of hid-
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Table 3: AST BLEU on MuST-C for EN-DE and EN-FR.

(a) MuST-C 56 hours.

Lang Features tst-COMMON tst-HE

EN-DE

wav2vec 7.56 7.21
wav2vec+norm 7.83 8.12

fbanks 1.50 1.09
fbanks+norm 4.89 4.87

EN-FR

wav2vec 12.08 12.41
wav2vec+norm 12.58 12.58

fbanks 0.54 0.00
fbanks+norm 7.10 6.37

(b) MuST-C 84 hours.

Lang Features tst-COMMON tst-HE

EN-DE

wav2vec 10.57 10.43
wav2vec+norm 10.30 10.27

fbanks 0.74 0.66
fbanks+norm 7.68 7.84

EN-FR

wav2vec 16.18 16.68
wav2vec+norm 16.84 16.37

fbanks 1.65 0.97
fbanks+norm 14.31 13.86

Table 4: Phone error rate (PER %) on TIMIT dev and test set.

No. Feature TIMIT dev TMIT test
1 wav2vec 13.0 15.0
2 wav2vec + norm 13.9 15.8
3 fbanks 22.2 24.9
4 fbanks + norm 20.7 23.5

den size 320, decoder with 1 LSTM layer and location-based
attention [31]. The results of Table 4 confirm that wav2vec rep-
resentations (normalized or not) are much better at recognizing
phones than fbanks.

5.2. Better source-target alignments

We evaluate the entropies of the soft alignments obtained with
different speech representations in teacher forcing mode. Let
αtj be the alignment score between target token yt and source
speech frame xj , we evaluate the entropy of the probability dis-
tribution αt, Ht =

∑|x|
j=1 αtj logαtj for every target token.

This measure is then averaged for all tokens at the corpus level
(How 10%). A low entropy means the attention mechanism is
confident in its source-target alignments (see example in Fig-
ure 3). Table 5 shows clearly that, in our low resource set-
ting, wav2vec leads to better alignments (lower entropy) than
fbanks. Fine-tuning and normalization of self-supervised repre-

Table 5: Averaged entropies of soft-alignments on How2 dev
and val set. AST models trained on 10% partition of How2.

No. Feature How2 dev How2 val
1 wav2vec 0.66 0.66
2 wav2vec + FT 0.65 0.65
3 wav2vec + norm 0.57 0.57
4 wav2vec + FT + norm 0.51 0.51
5 fbanks 0.89 0.90
6 fbanks + norm 0.93 0.93

(a) wav2vec - entropy = 0.67 (b) fbanks - entropy = 0.81

Figure 3: Soft alignments between source speech features and
target text for sentence “A outra pessoa perde.”

sentations also improve the soft alignments.

5.3. Better robustness to speaker variability

Table 6: Equal error rate (EER %) on the VoxCeleb1 test and
LibriSpeech test sets for female (f) and male (m) speakers.

No. Feature VoxCeleb Libri (f) Libri (m)
1 wav2vec 22.75 11.22 2.23
2 wav2vec + norm 20.93 10.54 1.79
3 fbanks 15.78 5.47 0.89
4 fbanks + norm 16.25 3.47 0.67

To investigate robustness to speaker variability, we trained
several automatic speaker verification (ASV) systems using
wav2vec or fbanks features. Models are trained on LibriSpeech
train-clean-360 dataset [23] using Kaldi [32]. ASV systems are
based on x-vectors and probabilistic linear discriminant analysis
(PLDA) [33]. To extract x-vectors, we used a time delay neural
network (TDNN) model topology similar to the one described
in [33]. Input features are fbanks or wav2vec (optionally nor-
malized) while output corresponds to 921 speakers of the train-
ing corpus. ASV experiments are conducted on the VoxCeleb1
test [34] and LibriSpeech test-clean [23] sets.9 ASV results
(equal error rate - EER) are presented in Table 6. We observe
that in all experiments, models trained on wav2vec features pro-
vide significantly higher EER in comparison with fbanks. This
confirms our hypothesis that wav2vec representations remove
speaker information from speech signal.10

6. Conclusion
We investigated the impact of self-supervised learning for end-
to-end AST. It was shown that representations based on con-
trastive predicting coding (CPC) improve results significantly
compared to baseline filter-bank, in low-medium resource con-
ditions (train < 100h). Our explanation is that self-supervised
representations show better phone discrimination, source-target
alignments and speaker robustness.
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9The trial and enrollment subsets of the LibriSpeech test-clean for
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“Learning problem-agnostic speech representations from multiple
self-supervised tasks,” 2019.

[14] A. Bérard, O. Pietquin, C. Servan, and L. Besacier, “Listen and
translate: A proof of concept for end-to-end speech-to-text trans-
lation,” in NIPS Workshop on End-to-end Learning for Speech and
Audio Processing, 2016.

[15] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen,
“Sequence-to-sequence models can directly transcribe foreign
speech,” in Proc. of INTERSPEECH, 2017.

[16] A. Bérard, L. Besacier, A. C. Kocabiyikoglu, and O. Pietquin,
“End-to-end automatic speech translation of audiobooks,” CoRR,
vol. abs/1802.04200, 2018. [Online]. Available: http://arxiv.org/
abs/1802.04200

[17] S. Bansal, H. Kamper, K. Livescu, A. Lopez, and S. Goldwater,
“Pre-training on high-resource speech recognition improves low-
resource speech-to-text translation,” CoRR, vol. abs/1809.01431,
2018. [Online]. Available: http://arxiv.org/abs/1809.01431

[18] Y. Chung, W. Weng, S. Tong, and J. Glass, “Towards unsupervised
speech-to-text translation,” CoRR, vol. abs/1811.01307, 2018.
[Online]. Available: http://arxiv.org/abs/1811.01307

[19] Y. Jia, R. J. Weiss, F. Biadsy, W. Macherey, M. Johnson,
Z. Chen, and Y. Wu, “Direct speech-to-speech translation with a
sequence-to-sequence model,” CoRR, vol. abs/1904.06037, 2019.
[Online]. Available: http://arxiv.org/abs/1904.06037

[20] M. A. Di Gangi, R. Cattoni, L. Bentivogli, M. Negri,
and M. Turchi, “MuST-C: a Multilingual Speech Translation
Corpus,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 2012–2017. [Online].
Available: https://www.aclweb.org/anthology/N19-1202

[21] Y. Jia, M. Johnson, W. Macherey, R. J. Weiss, Y. Cao,
C. Chiu, N. Ari, S. Laurenzo, and Y. Wu, “Leveraging
weakly supervised data to improve end-to-end speech-to-
text translation,” CoRR, vol. abs/1811.02050, 2018. [Online].
Available: http://arxiv.org/abs/1811.02050

[22] M. Sperber, G. Neubig, J. Niehues, and A. Waibel, “Attention-
passing models for robust and data-efficient end-to-end speech
translation,” CoRR, vol. abs/1904.07209, 2019. [Online]. Avail-
able: http://arxiv.org/abs/1904.07209

[23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: an ASR corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[24] R. Sanabria, O. Caglayan, S. Palaskar, D. Elliott, L. Barrault,
L. Specia, and F. Metze, “How2: a large-scale dataset for mul-
timodal language understanding,” in ViGIL Workshop, NeurIPS,
2018.

[25] H. Nguyen, N. Tomashenko, M. Z. Boito, A. Caubriere,
F. Bougares, M. Rouvier, L. Besacier, and Y. Esteve, “ON-TRAC
consortium end-to-end speech translation systems for the IWSLT
2019 shared task,” in Proc. of IWSLT, 2019.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. of ICLR, 2015.

[27] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Transla-
tion by Jointly Learning to Align and Translate,” in Proc. of ICLR,
2015.

[28] H. Inaguma, S. Kiyono, K. Duh, S. Karita, N. E. Y. Soplin,
T. Hayashi, and S. Watanabe, “ESPnet-ST: All-in-one speech
translation toolkit,” arXiv preprint arXiv:2004.10234, 2020.
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