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Abstract
Simultaneous machine translation consists in starting output gen-
eration before the entire input sequence is available. Wait-k
decoders offer a simple but efficient approach for this problem.
They first read k source tokens, after which they alternate be-
tween producing a target token and reading another source token.
We investigate the behavior of wait-k decoding in low resource
settings for spoken corpora using IWSLT datasets. We improve
training of these models using unidirectional encoders, and train-
ing across multiple values of k. Experiments with Transformer
and 2D-convolutional architectures show that our wait-k models
generalize well across a wide range of latency levels. We also
show that the 2D-convolution architecture is competitive with
Transformers for simultaneous translation of spoken language.

1. Introduction
Neural Sequence-to-Sequence (S2S) models are state-of-the-art
for sequential prediction tasks including machine translation,
speech recognition, speech translation, text-to-speech synthesis,
etc. The most widespread models are composed of an encoder
that reads the entire input sequence, while a decoder (often
equipped with an attention mechanism) iteratively produces the
next output token given the input and the partial output decoded
so far. While these models perform very well in the typical offline
decoding use case, recent works studied how S2S models are
affected by online (or simultaneous) constraints, and which ar-
chitectures and strategies are the most efficient. Online decoding
is desirable for applications such as real-time speech-to-speech
interpretation. In such scenarios, the decoding process starts be-
fore the entire input sequence is available, and online prediction
generally comes at the cost of reduced translation quality. In this
paper we improve training and decoding of deterministic wait-k
models that are simple and efficient for online decoding [1, 2].
These decoders first read k tokens from the source, after which
they alternate between producing a target token and reading
another source token, see Figure 1.

In summary our contributions are: (1) we propose improved
training techniques for wait-k by first using unidirectional en-
coders and training across multiple values of k. (2) we show that
2D convolutional architectures are competitive with transform-
ers for simultaneous (online) translation, especially in lower re-
source settings such as encountered for spoken corpora (IWSLT
datasets), (3) we show that training along multiple wait-k paths
achieves good online performance without the need to set a suit-
able k a priori for training. Moreover, models trained in this
manner generalize well across a wide range of latency levels.

2. Related work
After pioneering works on online statistical MT [3, 4, 5, 6, 7],
one of the first works on online translation to use attention-
based sequence-to-sequence models is that of [8], which uses
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Figure 1: Wait-k decoding as a sequence of reads (horizontal)
and writes (vertical) over a source-target grid. After first reading
k tokens, the decoder alternates between reads and writes. In
Wait-∞, or Wait-until-End (WUE), the entire source is read first.

manually designed criteria that dictate whether the model should
make a read/write operation. [9] reads equally-sized chunks
of the source sequence and generates output sub-sequences of
variable lengths, each ending with a special end-of-segment
token. [10] proposed a deterministic decoding algorithm that
starts with k read operations then alternates between blocks of
l write/read operations. This simple approach outperforms the
information based criteria of [8], and allows complete control of
the translation delay. [1] trained Transformer models [11] with
a wait-k decoding policy that first reads k source tokens then
alternate single read-writes. Wait-k approaches were found most
effective by [2] when trained for the specific k that is used to
generate translations. This, however, requires training separate
models for each potential value of k used for translation.

For dynamic online decoding, [12, 13] rely on reinforcement
learning (RL) to optimize a read/write policy. [12] learns an
LSTM model that emits read/write decisions based on the input
and output prefixes processed so far. [13] trains an RNN fed
with the encoder and decoder current hidden states to gener-
ate read/write decisions. RL based models are first pre-trained
offline, and then fine-tuned with policy gradient to optimize a
reward balancing translation quality and latency.

To combine the end-to-end training of wait-k models with
the flexibility of dynamic online decoding, [14, 15, 2] use im-
itation learning (IL). [14] estimates a decoding path from the
source-target alignments obtained with an off-the-shelf align-
ment model then trains a recurrent network to jointly encode
the two sequences following the alignment path. [15] adds end-
of-segment tokens to the target w.r.t. two wait-k paths during
training. At test time, decoding is controlled with the end-of-
segment token and constrained to lie in between the two training
paths. [2] supervises the training of a decoder that controls
the read/write decision using an oracle derived from an offline
translation model.

Recent work on dynamic online translation use monotonic
alignments [16]. They were first introduced as a substitute for
attention that enables progressive reading of the source context
and where only a single (last read) encoder state is fed to the
decoder. MoChA [17] adds chunkwise attention on top of mono-
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Figure 2: Illustration of bi/uni-directional attention, and causal two-dimensional convolutions. At the position marked with •, the
convolution only includes signals from the highlighted blue area, the other weights are zeroed out.

tonic alignments to attend to a window of the last encoder states
and MILk [18] broadens this window with an infinite lookback
to boost the translation quality. [19] adapted MILk’s monotonic
attention for multi-headed Transformer decoders.

Simultaneous translation models usually operate under a
streaming constraint where an emitted output cannot be altered,
alternatively, [20, 21, 22] propose decoding strategies that allow
for revision to correct past outputs.

In our work, we focus on wait-k decoding, but unlike [1]
we opt for unidirectional encoders, and show that they are more
effective and efficient for online translation. We also show that it
is possible to train a single model that is effective across a large
range of latency levels.

3. Online translation models
In the following we describe how we adapt the transformer [11]
and pervasive attention [23] architectures to the online translation
setting, and how we train them for wait-k decoding.

3.1. Online Transformer (TF)

The key component of the transformer model [11] is multi-
headed attention, which concatenates the outputs of multiple
attention heads. Attention aggregates encoder/decoder states
from other positions in the form of a weighted sum, where the
weights depend on the current state.

Wait-k online decoding [1, 10] starts by reading k source
tokens, and then alternates between reading and writing a single
token at a time, until the full source has been read, or the target
generation has been terminated. Formally, we denote with zt the
number of source tokens read when decoding yt. For a wait-k
decoding path we have zt = min(k + t− 1, |x|).

In the encoder-decoder attention, the decoder state ht, used
to predict yt+1, attends to the first zt+1 source states, and each
source state should only encode signal from the zt source tokens
read so far. Self-attention makes the source encoder bidirectional,
i.e. the encoder state at a given position includes signals from
past as well as future time-steps. This means that, as in [1, 2], the
bidirectional source encoding has to be recomputed each time a
source token is read, so that past source tokens can attend to the
newly available source tokens, see Figure 2a.

To alleviate the cost of re-encoding the input sequence after
each read operation, we propose unidirectional encoders for
online translation, by masking the self-attention to only consider
previous time-steps, as in Figure 2b. In this manner, unlike [1,
2], both during training and deployment, source sequences are
encoded once, without having to update the encoder states as
new source tokens become available.

3.2. Online Pervasive Attention (PA)

In Pervasive Attention [23], the source and target sequences are
jointly encoded with a two-dimensional convolutional neural
network (CNN). For decoding, [23] uses causal convolutions

where the filters mask future target positions, see Figure 2c. In
a similar way, to adapt to the online translation task, we mask
the filters in the source direction in order to encode the source
unidirectionally, see Figure 2e. In our online version of Pervasive
Attention, the CNN’s ultimate features Hconv at a given position
(t, j) of the source-target grid encode source context up to xj
and target context up to yt. In the offline Pervasive Attention, a
single representation per target position is needed to predict the
next output token, which is obtained using max-pooling across
the source positions, see Figure 2d. In the online task, we would
like to make a prediction at every position where the model could
be asked to write. When predicting yt at position (t− 1, zt) of
the grid we max-pool the activations in Hconv

t−1,≤zt , see Figure 2f.
One major difference between Pervasive Attention (PA) and

Transformer is that in PA, the source-target representation at any
given position (t, zt) is independent from the decoding path z
taken to get to that point. In a transformer model, however, the
representation at (t, zt) depends on the order in which tokens
were read and written up to that point.

3.3. Training wait-k models

In [1, 10] the model is optimized by maximum likelihood esti-
mation w.r.t. a single wait-k decoding path zk:

log p(y |x,zk) =
|y|∑
t=1

log pθ(yt|y<t,x≤zkt ,z
k
<t). (1)

Note that the dependency on zk<t is only relevant for the Trans-
former model where the path history matters.

Instead of optimizing a single decoding path, we propose
to jointly optimize across multiple wait-k paths. The additional
loss terms provide a richer training signal, and potentially yield
models that could perform well in different latency regimes.
Due to the dependence of the decoder hidden states on the full
decoding path z<t in the transformer-based model, we can only
train in parallel across a limited set of paths. We consider wait-k
paths {zk,∀k ∈ K}. During training, we encode the source
sequence once, and uniformly sample k ∈ K to decode:

EK

[
log p(y |x,zk)

]
≈

∑
k∼U(K)

log pθ(y|x,zk). (2)

To cover all possible wait-k paths for an input (x,y), we set
K = [1, . . . , |x|]. We will refer to this training with multi-path.

With Pervasive Attention, we can leverage more training
signals. In fact, the grid nature of the model allows us to effi-
ciently compute the output distributions p(yt|y<t,x≤j) all over
the grid in a single forward pass. Consequently, we optimize the
writing log-likelihoods in the area above the diagonal with:

|y|∑
t=1

|x|∑
j=1

log pθ(yt|y<t,x≤j)[[j ≥ t]]. (3)

We will refer to this training with multi-path as well.
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Table 1: Evaluation of Pervasive Attention (PA) and Transformer
(TF) for offline translation with greedy decoding.

Encoder Unidirectional Bidirectional

Architecture PA TF PA TF

IWSLT’14 En )De 26.81 26.58 27.23 27.46
IWSLT’14 De )En 32.40 32.81 33.43 33.64

IWSLT’15 En )Vi 29.22 28.90 29.81 29.33
IWSLT’15 Vi )En 26.81 25.73 27.43 28.09

WMT’15 De )En 28.08 31.14 28.78 31.96

4. Experimental evaluation
4.1. Datasets and experimental setup

We evaluate our approach on IWSLT14 En↔De [24], IWSLT’15
En↔Vi [25], and WMT15 De )En datasets.1 We train offline
unidirectional and bidirectional Transformer (TF) and Pervasive
Attention (PA) models on all tasks. On IWSLT’14 De↔En,
similar to [23, 26], we train on 160K pairs, develop on 7K held
out pairs and test on TED dev2010+tst2010-2013 (6,750 pairs).
All data is tokenized and lower-cased and we segment sequences
using byte pair encoding [27] with 10K merge operations. The
resulting vocabularies are of 8.8K and 6.6K types in German
and English respectively. On IWSLT’15 En↔Vi, similar to [19,
25], we train on 133K pairs, develop on TED tst2012 (1,553
pairs) and test on TED tst2013 (1,268 pairs). The corpus was
simply tokenized resulting in 17K and 7.7K word vocabularies
in English and Vietnamese respectively. On WMT’15 De )En,
we reproduce the setup of [1, 18] with a joint vocabulary of 32K
BPE types. We train on 4.5M pairs, develop on newstest2013
(3,000 pairs) and test on newstest15 (2,169 pairs).

Our Pervasive Attention models use residual-cumulative
skip connections and stack N = 14 layers with 11 × 11 con-
volutions. We train Transformer small on IWSLT’14 De↔En,
a modified base [19] on IWSLT’15 En↔Vi and Transformers
base and big on WMT’15 De )En.

We evaluate all models with greedy decoding, and mea-
sure translation quality measured with tokenized word-level
BLEU [28] with multi-bleu.pl. We measure decoding latency
with Average Lagging (AL) [1], which is designed to indicate the
source steps by which we lag behind an ideal translator (wait-0),
it can however be negative if the system finishes decoding prema-
turely before the full source is read. Other measures of lagging
include Average proportion (AP) [8] and Differentiable Average
Lagging (DAL) [18]. AP is unfavorable to short sequences and
is incapable of highlighting improvement as it occupies a narrow
range [1, 18, 29]. DAL is a differentiable version of AL used to
regularize trainable decoders, and behaves similarly to AL.

4.2. Offline comparison

Table 1 reports offline performance of Pervasive Attention (PA)
and Transformer (TF) models with both a unidirectional en-
coder and a bidirectional encoder. Overall, and as expected,
bidirectional encoders in the offline setup are better than their
unidirectional counterparts. The gain for PA is of 0.65 on aver-
age while for TF the addition of bidirectionality improves BLEU
by 1.1 on average. The first two columns of Table 1 show that
pervasive attention (PA) is competitive with TF on these datasets
when using unidirectional encoders: PA improves upon TF on

1http://www.statmt.org/wmt15/

Table 2: Decoding speed of Transformers with uni/bi-directional
encoders for De )En on IWSLT’14 and WMT’15.

Decoding (tok/s)
Encoder GPU CPU

IWSLT
De )En

Unidirectional 21.7k 130
Bidirectional 7.3k 54

WMT
De )En

Unidirectional 6.3k 77
Bidirectional 2.9k 32
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Figure 3: Transformer models with bi/uni-directional encoders
trained on wait-1 and wait-7 decoding paths.

three of the five tasks.

4.3. Online comparison

For the Transformer model, we initially consider a bidirectional
encoder similar to [1, 2], in which case the encoder states have
to be updated after each read. The timing results in Table 2 show
that using a bidirectional encoder rather than a unidirectional
one slows decoding down by a factor two to three. Second, in
Figure 3 we assess the impact of the uni/bidirectional encoder on
online decoding quality. We look at models trained using either
of two wait-k paths: ktrain=1 and ktrain=7. We observe that in the
case of online decoding unidirectional encoding performs best,
in contrast to the case for offline decoding. For both ktrain=1
and ktrain=7, the unidirectional encoder is consistently providing
better performance. For the experiments below we therefore use
unidirectional encoders.

Pervasive Attention and Transformer for online translation.
We evaluate models trained for different wait-k decoding paths.
We denote with ktrain=∞ the wait-until-end training where the
full source is read before decoding. We report offline results for
reference, the offline model has a latency of AL = |x|.

Figure 4 presents the performance of models trained for
a single wait-k decoding path, with ktrain ∈ {1, 7,∞}. Each
trained model is represented by a curve, by evaluating it across
different wait-k decoding paths keval ∈ {1, 3, 5, 7, 9}.

Initial experiments with both architectures across the four
IWSLT tasks showed that models trained on wait-7 generalize
well on other evaluation paths. Thus, unlike [1], we note that
we can train a single model to use in different latency regimes,
i.e. we do not achieve better BLEU scores when training with
keval = ktrain. This generalization to other wait-k paths is notably
stronger with pervasive attention (PA) models. Where TF models
drop in performance far from the training path (e.g. ktrain = 1
and keval = 9), the PA models continue to improve for larger keval.
Overall, for tasks where PA performs better offline the model
consistently outperforms TF online and vice-versa. It is worth
noting that for some translation directions, we can outperform
the offline model’s performance at a considerably lower latency.
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Figure 4: IWSLT’14 De↔En and IWSLT’15 En↔Vi: wait-k online decoding with Pervasive Attention (top) and Transformer (bottom),
both with unidirectional encoder. Each curve represents a model trained on a single decoding path, evaluated with keval ∈ {1, 3, 5, 7, 9}.
Offline models have an average lagging of 22.97, 22.21, 21.08 and 26.56 on De )En, En )De, En )Vi and Vi )En, respectively.
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Figure 5: Evaluation of our models on WMT’15 De )En, and comparison to the state of the art (SoTA). Offline models have an average
lagging of 26.96. Note that in panel (b) STACL ktrain = keval shows the results of [2] where an end-of-sequence marker was added to the
source to improve over [1].

This is in particular the case for En )Vi where the online PA with
an AL of 4.65 matches the performance of the offline model with
an AL of 21.08, see Figure 4c.

Joint training on multiple paths. We found that training on
a particular wait-k path can generalize well to other paths. To
avoid tuning ktrain to find the optimal path for each specific task,
we consider jointly optimizing on multiple paths. Results in
Figure 4 show that this joint optimization, for both architectures
and on two datasets, manages to achieve comparable or better
results than training on a single manually selected path.

Experiments on the WMT15 De )En. On WMT15 De )En
we experiment with transformer base (comparable to [1, 2] and
big (comparable to [18, 19]).2 In Figure 5a we observe, as for
IWSLT, that jointly training on multiple wait-k paths outper-
forms training on a single path where the performance drops
as we move away from ktrain. The advantage of joint training
with unidirectional encoders is confirmed in Figure 5b when
comparing our results to STACL which trains separate bidirec-
tional models for each decoding path with ktrain = keval. Our
models also outperform SL [2] that optimize dynamic agents
with imitation learning (IL).

Both our base and big multi-path models match or improve

2MILk is based on RNMT+ which outperforms TF big offline [30].

the performance of the dynamic MILk [18] that requires training
for each latency regime (each mark in the dotted curves is a
different model) whereas our wait-k model is simply evaluated
with different values of keval. The more recent MMA-H and
MMA-IL [19] adapting MoChA and MILk for Transformer mod-
els outperform wait-k models for AL < 6, but fail to optimize a
medium lagging model.

5. Conclusion
In this paper, we demonstrated that unidirectional encoders for
online MT achieve better translation qualities than bidirectional
ones, with faster training and decoding. Moreover, we intro-
duced joint training for wait-k decoders addressing the need to
train a different model for each lagging value. Our models are
trained end-to-end and, unlike conventional wait-k, can operate
across the full spectrum of lagging with the quality increasing
with the value of k. In low-resource settings, we found Perva-
sive Attention models to be competitive with Transformers for
online translation. Our wait-k models are state-of-the-art among
deterministic online translation strategies, and provide a strong
baseline for simultaneous translation with dynamic decoding.
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