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Abstract
Multimodal emotion recognition from the speech is an impor-
tant area in affective computing. Fusing multiple data modal-
ities and learning representations with limited amounts of la-
beled data is a challenging task. In this paper, we explore the
use of modality specific“BERT-like” pretrained Self Supervised
Learning (SSL) architectures to represent both speech and text
modalities for the task of multimodal speech emotion recog-
nition. By conducting experiments on three publicly avail-
able datasets (IEMOCAP, CMU-MOSEI, and CMU-MOSI), we
show that jointly fine-tuning “BERT-like” SSL architectures
achieve state-of-the-art (SOTA) results. We also evaluate two
methods of fusing speech and text modalities and show that a
simple fusion mechanism can outperform more complex ones
when using SSL models that have similar architectural proper-
ties to BERT.
Index Terms: speech emotion recognition, self supervised
learning, Transformers, BERT, multimodal deep learning

1. Introduction
Emotion recognition plays a significant role in many intelligent
interfaces [1]. Even with the recent advances in Deep Learning
(DL), this is still a challenging task. The main reason being that
most publicly available annotated datasets in this domain are
small in scale, which makes DL models prone to over-fitting.
Another important feature of emotion recognition is the inher-
ent multi-modality in the way we express emotions [2]. Emo-
tional information can be captured by studying many modali-
ties, including facial expressions, body postures, and EEG [3].
Of these, arguably, speech is the most accessible. In addition
to accessibility, speech signals contain many other emotional
cues [4]. Although speech signals contain substantial amounts
of information, it can be unrewarding to drop the linguistic com-
ponent that coexists with it, especially given that the text com-
ponent can be easily transcribed in real world applications with
the considerable successes in the domain of speech-to-text with
several commercial-scale APIs being available [5].

In multimodal emotion recognition, representation learning
and fusion of modalities can be identified as a major research
area [6, 7, 8]. Recent work has explored the use of deep rep-
resentations in contrast to low level representations [9] such as
MFCC, COVAREP [10] or GloVe embeddings [11]. Such deep
representation techniques can mainly be categorised into two
main categories: 1) transfer learning techniques that use pre-
trained networks to extract features [12, 13, 14] or fine-tune
models [15]; and 2) unsupervised embeddings learning tech-
niques which include variational auto-encoders (VAE) [16] and
adversarial auto-encoders (AE) [17]. It is also important to
highlight that performance usually degrades in transfer learn-
ing techniques due to the mismatch of source and target tasks.
Recent work [18] explains the problems related to learn disen-

tangled representations from VAE when no inductive bias on the
model or the dataset exists. In terms of fusing multiple modali-
ties, recent work has explored architectures like attention [2, 7],
graph neural networks [19] and transformers [8]. Multimodal
fusion mechanisms, especially those that fuse deep representa-
tions, usually result in architecturally complex models [20].

In representation learning, a class of techniques known as
SSL has achieved SOTA performance in many areas of Natual
Language Processing (NLP) [21, 22], Computer Vision [23, 24]
(CV) and speech recognition [25, 26, 27]. SSL enables us to
use a large unlabelled dataset to train models that can be later
used to extract representations and fine-tune for specific prob-
lems that may have limited amounts of training data. Prior
works [21, 23] have highlighted the effectiveness of fine-tuning
pre-trained SSL models for specific tasks in contrast to using
them only as frozen feature extractors. A significant transition
happened in the field of NLP with the introduction of SSL mod-
els like the Deep Bidirectional Transformers [21] (BERT) and
its successors [22]. By adding a single task-specific layer to a
pre-trained SSL model like BERT, one can solve multiple down-
stream tasks. BERT-like models also consist of favourable ar-
chitectural features such as the CLS token, which can be used
as a representation for the entire sequence. Another important
factor is the extensive availability of pre-trained models in the
open-source community, which leads to both cost and time sav-
ings since these models tend to be very computationally expen-
sive to train from scratch.

Even though several SSL models have been introduced for
speech recognition related tasks like speech-to-text [26, 27] and
speech emotion recognition [25], prior work has not looked at
combining multiple separate SSL models, each specializing in
one modality. This may be due to the architectural complex-
ity of such models brought on by the fact that usually, these
SSL networks have a large number of parameters. Combining
multiple drastically different high dimensional representations
is also not a simple task and may increase the parameter count
even further. If, however, the modality specific SSL architec-
tures share similar properties, then we may be able to use sim-
pler fusion mechanisms to extract information for the desired
task. Our work was heavily inspired by recent work [27, 28],
which explored the effectiveness of self supervised pre-training
with discretized speech representations for the task of Auto-
matic Speech Recognition (ASR).

For the first time in the literature, we jointly fine-
tuned modality-specific “BERT-like” SSL models that represent
speech [28, 27] and text [24] on the task of multimodal emotion
recognition. We further evaluate how simple fusion methods, -
which add minimal additional trainable parameters, performed
when compared with more complex fusion mechanisms such as
Co-Attentional [24] fusion. We also conducted a series of abla-
tion studies to explore which factors affect the performance of
these models. Please refer the Pytorch implementation.
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2. Pre-Trained SSL models
We summarise the three pretrained SSL models that were used
to process speech and text signals in the proposed framework in
the following sections. We use pretrained models available in
the Fairseq toolkit [29].

2.1. VQ-Wav2Vec

VQ-Wav2Vec [27] is an extension of Wav2Vec [26], which fo-
cuses on moving continuous speech representations into the dis-
crete domain. Wav2Vec [26] learns representations from speech
signals based on Contrastive Predictive Coding [30] (CPC). The
major difference in VQ-Wav2Vec [27] from Wav2Vec [26] is
the application of Vector Quantization [31] methods to gen-
erate discretized speech representations. In our experiments,
we used a pretrained VQ-Wav2Vec [27] model that trained on
Librispeech-960 [32] to represent speech signals as a sequence
of tokens, similar to the tokenization step for a sentence in NLP.

2.2. Speech-BERT

The term Speech-BERT is used in our work to define a BERT-
like Transformer architecture trained on a set of discretized
speech tokens, where the speech signal was discretized and tok-
enized by a pretrained VQ-Wav2Vec as mentioned in the above
section. We were heavily motivated by recent work[28], which
illustrated the effectiveness of BERT-like models in the domain
of ASR. We used a pretrained Speech-BERT, which was trained
on the discretized Librispeech-960 [32] dataset with the pretext
task of mask token prediction. The Speech-BERT model ar-
chitecture is similar to BERT-base [21] that consists of 12 lay-
ers and an embedding dimension of 768. During our exper-
iments, we fine-tune the Speech-BERT model for the task of
multimodal emotion recognition.

2.3. RoBERTa model

RoBERTa [22] is an extension of the BERT [21] model which
does not use the next sentence prediction task [22] during train-
ing. The RoBERTa [22] architecture consists of 24 layers and
an embedding dimension of 1024. Similar to Speech-BERT, we
fine-tune the RoBERTA [22] model for the task of multimodal
emotion recognition.

3. Methodology
We explore the use of Speech-BERT and RoBERTa SSL mod-
els for the task of multimodal speech emotion recognition. As
the first step, we evaluate two possible fusion mechanisms to
combine the two SSL models. The performance of the final pro-
posed model was then compared with published SOTA results
on IEMOCAP [33], CMU-MOSEI [34], and CMU-MOSI [35]
datasets. Finally, we conduct an extensive set of ablation stud-
ies with the IEMOCAP dataset [33] to understand the behaviour
of our proposed framework under different settings. We inves-
tigate the effects of fine-tuning and frozen states for Speech-
BERT, RoBERTa, as well as the effects of different fusion
mechanisms.

3.1. Model Pipeline

Figure 1 gives an overview of the proposed framework. Both the
speech signal and text transcripts are simultaneously fed into
the model via two different pipelines. The speech signal gets
discretized by a pre-trained VQ-Wav2Vec [27] model and the

raw speech signal raw text transcript

pretrained VQ-Wav2Vec
Qunatizer

(tokenizing speech)

GPT-2 tokenizer
(tokenizing text)

sn....s3s2s1 tm....t3t2t1

Pre-trained RobertaPre-trained Speech-BERT

CLSspeech Es3Es2 .... Esn Et3Et2 .... Etn

Fully Connected Layer + Softmax

Concatenation

CLSspeech CLStext

CLStext

Figure 1: Overview of the proposed framework with Shallow-
Fusion

text transcript is tokenized with the GPT-2 tokenizer [36]. Once
speech and text modalities are tokenized, we send them through
pre-trained Speech-BERT and RoBERTa models, where the
outputs have embedding sizes 768 and 1024 and maximum se-
quence lengths of 2048 and 512 respectively. The next step
is fusing these embeddings prior to the prediction head, which
consists of a single fully connected layer. In this paper we ex-
plore two possible mechanisms, which we will discuss in Sec-
tion 3.2. Finally, we fine-tune the entire framework, including
both Speech-BERT and Roberta SSL models (the components
inside the blue dotted box in Figure 1).

3.2. Fusion of SSL model outputs

The fusion mechanism plays an essential role in any multimodal
speech emotion recognition framework. In this work, we anal-
yse how the following different fusion mechanisms affect per-
formance.

3.2.1. Shallow Fusion

The success of BERT in sentence classification tasks [21] high-
lights the effective use of the CLS token as a representation of
the entire sentence. CLS stands for the classification and it is
the first token of every input sequence to the BERT. Motivated
by recent work in the domain of NLP [21, 22], we concatenate
the two CLS tokens computed respectively from speech-BERT
and RoBERTa models as described in Figure 1 . Finally we send
the concatenated embedding through a classification head that
includes a fully connected layer that outputs logits followed by
a softmax function. Due to the simplicity of the fusion, we de-
scribe this mechanism as Shallow-Fusion. We also use Shallow-
Fusion as the standard fusion mechanism in the ablation studies
since it achieved superior performances in our experiments.

3.2.2. Co-Attentional Fusion

In order to provide an opportunity for an embedding level in-
teraction between the two modalities, we propose to use a
Co-Attentional layer [24]. Co-Attention is a variant of Self-
Attention [37] that has been used in visual-linguistic Trans-
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Figure 2: Co-Attentional layer and fusion mechanism

formers like VilBERT [24]. In contrast to Self-Attention, Co-
Attention is computed by interchanging Key-Value vector pairs
from one modality with the Query vector from another modal-
ity. Since the CLS token from each modality already aggre-
gates the sequential information [21], we calculate the Query
vector from each mortality’s CLS token and let it attend to the
entire sequence of the other modality embeddings. After the
Co-Attentional layer, we concatenate the modified CLS tokens
from each modality and send these through a prediction head.
Figure 2 gives a detailed illustration of the Co-Attentional layer
and the fusion mechanism.

4. Experimental Setup

We implemented our model using Pytorch and the Fairseq [29]
toolkit. All models were trained under distributed settings, us-
ing two Tesla v100 32GB GPUs with an effective batch-size
of 16. The Adam optimiser was used in the optimization with
warm-up updates and the polynomial decay learning-rate sched-
uler. The initial learning rate and dropout were set to 1e−5 and
0.1.

4.1. Performance Comparison with SOTA

4.1.1. IEMOCAP Experiments

The IEMOCAP [33] dataset contains conversation data of 10
male and female actors. Similar to prior work [38, 2], we
selected the most commonly used four emotion categories of
Happy (& Excitement), Sad, Anger, and Neutral. We followed
the experimental procedure and evaluation metrics of previous
studies [8, 39]. Table 4 provides a comparison of model perfor-
mance with other SOTA models on Binary Accuracy (BA) and
the F1-score [39, 8]. Table 5 illustrates the performance com-
parison w.r.t 4-class unweighted accuracy metric following the
recent work done by Li et al [2].

4.1.2. CMU-MOSEI and CMU-MOSI Experiments

CMU-MOSEI [34] is the current largest dataset for multimodal
emotion recognition that consists of 22, 000 examples created
by extracting review videos from YouTube. Each example
is annotated with an integer score between -3 to +3. CMU-
MOSI [35] also has similar properties to CMU-MOSEI [34] but
only with 2000 examples. To compare our model with both
datasets, we follow the latest prior work that has used these
datasets [8, 39]. For both, we used 7-class accuracy, Mean-
Average-Error (MAE), 2-class accuracy (binary), and F1-score.
Table 2 and Table 3 describe the evaluation results on CMU-
MOSEI [34] and CMU-MOSI [35] datasets respectively.

5. Ablation studies
We conducted four ablation studies using the IEMOCAP [33]
dataset to understand the behaviour of the proposed framework.
We use Binary-Accuracy and F1 score for each emotion as the
evaluation metric. In order to have a fair setting in our abla-
tion experiments, we use the first three sessions of the IEMO-
CAP [33] dataset as training, the fourth session as validation
and fifth session as the test set. Table 1 illustrates the results of
our four ablation studies discussed in the following sections.

5.1. Comparison between two fusion mechanisms in Fine-
Tune state
In the first ablation study, Table 1 (5.1), we compare the perfor-
mance of each fusion mechanism when fine-tuning Speech-Bert
and Roberta for the downstream task of multimodal-emotion
recognition. Shallow-Fusion shows a slight improvement with
respect to binary accuracy and F1-scores for each emotion over
Co-Attentional fusion. This illustrates how a simple fusion
mechanism followed by a classification head work remarkably
well with finetuned “Bert-Like”” pretrained SSL models even
in a multimodal setting.

5.2. Comparison between Unimodal inputs
Table 1 (5.2) illustrates the performance comparison between
uni-modal inputs. In this experiment, we use the CLS token of
Speech-BERT and Roberta as the sequence representation for
speech and text. As the results suggest, text-only performs bet-
ter than speech-only. A possible reason might be the availability
of high emotional clues in the linguistic structure. However, we
can still see a clear improvement when comparing text-only re-
sults with our best performing multimodal model, which high-
lights the importance of multi-modality.

5.3. Comparison between fine-tuning and frozen SSL ar-
chitectures
Table 1 (5.3) looks at the effect of finetuning vs having frozen
Speech-BERT and RoBERTa models. Unsurprisingly, fine-
tuning the two SSL models with Shallow-Fusion for the down-
stream task leads to better performance.

5.4. Comparison between the two fusion mechanisms when
keeping SSL models frozen
Finally, we compare how the two fusion mechanism behave
when we keep Speech-BERT and RoBERTa in a frozen state
-using them only as feature extractors. Table 1 (5.4) shows
when the SSL networks are frozen, Co-Attentional fusion per-
forms better. We highlight that the increased number of inter-
actions prior to the prediction layers enables Co-Attentional fu-
sion to adapt better than Shallow-Fusion. Co-Attentioal fusion
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Table 1: Evaluation results of the ablation studies on IEMOCAP dataset with Binary Accuracy (BA) and F1 score
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requires a much larger number of new trainable parameters.
While the Co-Attentional layer adds nearly 6 million new pa-
rameters, Shallow-Fusion only adds close to fourteen thousand
parameters.

6. Conclusion
In this work, we use two pretrained “BERT-like” architectures
to solve the downstream task of multimodal emotion recogni-
tion. As per our knowledge, this is the first time that two SSL
algorithms that represent speech and texts are fine-tuned for the
task of multimodal speech emotion recognition. By conduct-
ing several experiments, we show how a simple fusion mecha-
nism (Shallow-Fusion) makes the overall framework simple and
straightforward and improve on more complex fusion mecha-
nisms. We also highlight the importance of introducing BERT-
like models to process speech signals, which can easily be used

to improve the performance of multimodal tasks like emotion
recognition. Having structurally similar “BERT-like” architec-
tures to represent both speech and text allows us to fuse modal-
ities in a straightforward way and quickly adapt standard prac-
tices in the NLP domain.

In future work, we hope to visualize and further explore
the behavior of SSL models for the task of multimodal emotion
recognition. Exploring the use of BERT-like models to repre-
sent speech could enable advances in NLP to be easily used in
the domain of speech.
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