
Parkinson’s Disease Detection from Speech using Single Frequency Filtering
Cepstral Coefficients

Sudarsana Reddy Kadiri 1, Rashmi Kethireddy 2, Paavo Alku 1

1Department of Signal Processing and Acoustics, Aalto University, Finland
2Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India

sudarsana.kadiri@aalto.fi; rashmi.kethireddy@research.iiit.ac.in; paavo.alku@aalto.fi

Abstract
Parkinson’s disease (PD) is a progressive deterioration of the
human central nervous system. Detection of PD (discriminat-
ing patients with PD from healthy subjects) from speech is a
useful approach due to its non-invasive nature. This study pro-
poses to use novel cepstral coefficients derived from the single
frequency filtering (SFF) method, called as single frequency fil-
tering cepstral coefficients (SFFCCs) for the detection of PD.
SFF has been shown to provide higher spectro-temporal reso-
lution compared to the short-time Fourier transform. The cur-
rent study uses the PC-GITA database, which consists of speech
from speakers with PD and healthy controls (50 males, 50 fe-
males). Our proposed detection system is based on the i-vectors
derived from SFFCCs using SVM as a classifier. In the de-
tection of PD, better performance was achieved when the i-
vectors were computed from the proposed SFFCCs compared
to the popular conventional MFCCs. Furthermore, we investi-
gated the effect of temporal variations by deriving the shifted
delta cepstral (SDC) coefficients using SFFCCs. These experi-
ments revealed that the i-vectors derived from the proposed SF-
FCCs+SDC features gave an absolute improvement of 9% com-
pared to the i-vectors derived from the baseline MFCCs+SDC
features, indicating the importance of temporal variations in the
detection of PD.
Index Terms: Speech Pathology, Single Frequency Filtering,
Parkinson’s Disease Detection.

1. Introduction
Disorders such as neurodegenerative diseases, psychiatric and
developmental diseases have an significant impact on humans
at personal, professional and social levels [1]. These diseases
influence adversely the quality of life and life span of individ-
uals. The early detection of the disease might reduce the ef-
fects physically and mentally, and allow a timely control of the
disease evaluation. The current study focuses on the detection
of one of the neurodegenerative diseases from speech, namely
Parkinson’s disease (PD). PD is the second most common neu-
rodegenerative disease after Alzheimer’s disease [2, 3].

The detection of PD from speech has been investigated in
many studies [4–7]. These previous studies can be divided into
four categories depending on the approach which has been used
to analyze the speech signal [4, 6]. These four approaches are:
(1) phonatory, (2) articulatory, (3) prosodic, and (4) linguis-
tic. The studies based on the phonatory approach focus on the
changes in the glottal source and in the larynx. There are only
a few studies in this group due to the difficulties in estimat-
ing the glottal source from disordered speech signals. Stud-
ies based on the articulatory and prosodic approaches are much
more prevalent as there exist several speech processing tools
for deriving features such as Mel-frequency cepstral coefficients

(MFCCs), pitch, duration, etc. [8,9]. In addition, the prevalence
of the articulatory approach is explained by results shown in
several studies indicating that articulation is greatly affected in
PD [8–10]. Finally, the studies belonging to the linguistic ap-
proach examine the use of vocabulary, phrase construction and
repetition of words by Parkinsonian speakers [11, 12]. For in-
vestigating the linguistic approach, previous studies have used
automatic speech recognition (ASR) in representing linguistic
units from speech. These studies have used classical features
such as bag of words and term frequency-inverse document fre-
quency [13].

For the analysis and detection of PD, many feature extrac-
tion methods of speech have been used to express Parkinsonian
speech signals in parametric forms. For capturing phonatory as-
pects, features quantifying variations in speech periodicity have
been investigated [14–16]. This parameterization approach is
justified because the extent of variations in the vocal folds vi-
bration in Parkinsonian speakers is more likely to deviate from
healthy speakers [17]. Features such as jitter (which is de-
fined as perturbation in fundamental frequency) and shimmer
(which is defined as perturbation in amplitude) are the most
commonly used measures for capturing variations in vocal fold
vibrations [5, 18]. In [5, 18, 19], various nonlinear voice pro-
duction -based features (such as the recurrence period density
entropy) were investigated. Recently in [14], glottal source fea-
tures (such as the quasi-open quotient, the normalized ampli-
tude quotient, the harmonic richness factor) were investigated
in the analysis of newly diagnosed Parkinsonian patients. To
measure the amount of noise in voice due to incomplete glot-
tal closure (with symptoms like breathiness and harshness), the
harmonics-to-noise ratio and the noise-to-harmonics ratio have
been used [5, 18]. For capturing articulatory variations, differ-
ent feature extraction methods have been widely investigated in
the areas of speech, speaker, and language recognition [20–22].
Among the popular features used in these areas, MFCCs, along
with their first and second derivatives, have been found to be
effective in the detection of PD [21, 23]. Examples of other
popular feature extraction methods, which have been first used
particularly in ASR but later also in the detection of PD, are
the linear prediction coefficients (LPCs), linear prediction cep-
stral coefficients (LPCCs) and perceptual linear prediction cep-
stral coefficients (PLPCCs) [24–26]. To capture the prosodic
aspects, features such as duration of voiced sounds, intonation,
loudness, speaking (syllable) rate are typically investigated in
the detection of PD. More details about the various types of
features used in the literature can be found in [21, 27–29].

In [21,24,30], it was observed that cepstral coefficients such
as MFCCs outperformed conventional features such as phona-
tory and prosodic features. Motivated by these previous studies,
we propose in the current article to use cepstral coefficients de-
rived using the recently proposed signal processing method, sin-
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gle frequency filtering (SFF). The SFF method has been shown
in [31–34] to provide higher spectral and temporal resolution
for deriving speech features compared to the short time Fourier
transform, which is used in the computation of MFCCs.

The major contributions of this study are:

• Investigating single frequency filtering cepstral coeffi-
cients (SFFCCs) for the detection of PD from speech
signals

• Exploring shifted delta cepstra (SDC) with SFFCCs
for capturing temporal variations in speech information
across frames

The organization of this paper is as follows. The single fre-
quency filtering (SFF) method is described first in Section 2
to explain the basis for extracting SFFCCs. The PD detection
system pipeline developed in this study by using the SFFCCs
features is described in Section 3. The experimental details are
discussed in Section 4, and results of the experiments are pre-
sented in Section 5. Finally, Section 6 presents a summary.

2. Single Frequency Filtering (SFF) and
Extraction of SFFCCs

In this section, the SFF method is first described. After this,
the extraction of cepstral coefficients, SFFCCs, from SFF is de-
scribed.

2.1. The Single Frequency Filtering (SFF) method

SFF [31, 32] is a time-frequency analysis method that is
used to compute an amplitude envelope as a function of
time for each frequency. The amplitude envelope is derived
by first frequency-shifting the pre-emphasized speech signal
(x[n]) by multiplying with an exponential function (x̂k[n] =

x[n]e−j2πf̂kn/fs , where fs is the sampling frequency, f̂k =
fs
2
− fk, and fk is the kth desired frequency). The frequency-

shifted signal is filtered using a single-pole filter. The transfer
function of the single-pole filter is H(z) = 1

1+rz−1 . The pole
of the filter is located on the negative real axis at z = −r. The
output of the filter is given by

yk[n] = −ryk[n− 1] + x̂k[n]. (1)

At frequency fk, the amplitude envelope (vk[n]) of yk[n] is
computed as

vk[n] =
√

(ykr [n])2 + (yki [n])2, (2)

where ykr [n] is the real part of yk[n] and yki [n] is the imaginary
parts of yk[n]. The amplitude envelopes can be computed for
several frequencies at intervals of ∆f by defining fk as follows:

fk = k∆f, k = 1, 2, . . . ,K, (3)

where K = (fs/2)
∆f

. In this study, 512 linearly spaced frequency
components are considered (which results in ∆f = 31.25).
The SFF spectrum can be obtained for each instant of time
from vk[n]. The steps involved in deriving the SFF spectrum
are shown in Fig. 1.

2.2. Extraction of SFFCCs

SFFCCs are extracted by computing the cepstrum (Ck[n]) of
the SFF spectrum as follows:

Ck[n] = IFFT(log10(vk[n])). (4)

Figure 1: Block diagram describing the steps involved in deriv-
ing the single frequency filtering (SFF) spectrum [34].

From Ck[n], the first 13 cepstral coefficients are considered,
which are referred to as SFFCCs. From static coefficients, delta
(∆) and double-delta (∆∆) coefficients are also derived, which
results in 39-dimensional SFFCCs. The schematic block dia-
gram describing the steps involved in the extraction of SFFCCs
is shown in Fig. 2.

   SFF 
Spectrum

Cepstrum

      Ck[n]

s[n]
vk[n]

  Log(.)   IFFT
log(vk[n])

Figure 2: Block diagram of the extraction of single frequency
filtering cepstral coefficients (SFFCCs) [33, 35]

3. Detection System
This section describes the details of the proposed system to de-
tect PD from speech signals. The block diagram describing the
steps involved in the proposed system is shown in Fig. 3. The
system consists of three main parts: front-end feature extrac-
tion, back-end processing, and classification. The feature ex-
traction stage includes the extraction of SFFCCs from the SFF
spectrum, followed by the extraction of SDCs from SFFCCs.
Back-end processing involves the extraction of fixed-length i-
vectors from the variable-length features. The last part involves
classifying the speech signals either as healthy or Pakinsonian
using the support vector machine (SVM) classifier.

Front-end feature extraction

 

SFFCC
Extraction SDC

Classification

Speech
utterance

Healthy/
Parkinsonian

Back-end	processing	(i-vector
extraction)

i-vectors

Static	SFFCC+	SDC

Figure 3: Block diagram of the proposed PD detection system.

3.1. Parameters used for SFFCCs feature extraction

For the SFF spectrum estimation, r = 0.99 and ∆f = 31.25
Hz (resulting in 512 amplitude envelopes) are used. SFFCCs
are extracted with an interval of 10 ms from vk[n] rather than
considering at every time instant, and first 13 cepstral coeffi-
cients are extracted.
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3.2. Shifted delta cepstra (SDC)

Studies in [36] have shown that the shifted delta cepstra (SDC)
features capture temporal variations in speech across several
frames. In this study, the SDC features are computed from the
SFFCCs for each frame. The configuration used in the compu-
tation of the SDC features, denoted as N -d-p-K, involves four
parameters, which are explained as follows. For time instant t,
delta computations are conducted between the cepstral coeffi-
cients of the (t+ ip− d)th frame and the (t+ ip+ d)th frame.
By varying i from 1 to K and by stacking the obtained values,
the delta coefficients are obtained. The SDC features, denoted
by ∆c(t, i), are computed for the cepstral coefficients at time t
and shift i as follows

∆c(t, i) = c(t + ip + d) − c(t + ip − d), (5)

where N denotes the dimension of the static cepstral coeffi-
cients; d denotes the delay/advance from the current frame;
p is the shift between consecutive delta computations; and
K such delta computations are concatenated to form N×K-
dimensional SDC coefficients. In many previous studies, SDCs
are derived from 13-dimensional MFCCs, using the 1-3-7 (d-
p-K) configuration. In the present study, the configuration for
SDC was initially set to 13-1-3-7 which resulted in 91 SDCs.
Combining both the static 13-dimensional SFFCCs and the 91-
dimensional SDCs results in a 104-dimensional feature vector
for each frame. In addition, we investigate in this study the ef-
fect of using different values for d and K which changes the
amount of temporal context (see Tables 3 and 4).

3.3. Extraction of i-vectors

The process of extracting i-vectors [37] involves factor analy-
sis for representing the feature vectors in terms of uncorrelated
latent components. Given variable-length features derived from
utterances, GMM models the dependencies along the utterances
by representing them using Gaussian components. Factor anal-
ysis is applied over the Gaussian supervectors (stacked means
of GMMs). Each utterance adapted by Gaussian supervectors
M can be represented by a mean component (m) and an offset
(Tw).

M = m + Tw, (6)
where mean component m is obtained from the model trained
on all class data (GMM-UBM supervectors), T is the total vari-
ability matrix, and w represents the i-vectors that are used for
classification. The initial means and variances of the GMM-
UBM model were learnt using k-means clustering. Various con-
figurations for the GMM and i-vector dimensions were investi-
gated and it was found that the system performed best using 8
Gaussian components and 50-dimensional i-vectors.

3.4. Classification

Detection experiments were carried out using the SVM classi-
fier. SVM was chosen because it is known to be an effective
classifier, when the amount of training data is limited. In the
experiments, 80% of the data is used for training and 20% of
data is used for testing. The SVM was trained with the radial
basis function (RBF) kernel in the one-vs-rest fashion.

4. Experimental setup
This section describes the PD database used, the evaluation met-
rics selected and the baseline features considered for compari-
son.

4.1. Database

In this study, the PC-GITA Parkinsonian speech database is
used [38]. The database consists of speech recordings of 50
patients with PD (25 male and 25 female) and 50 healthy con-
trols (25 male and 25 female). Recordings were carried out in a
sound proof booth and all the speakers are Colombian Spanish
native speakers. The database is balanced by gender and age.
The age ranges between 33 and 77 years (mean 62.26 years)
for the male patients, and between 44 and 75 years (mean 60.16
years) for the female patients. For the healthy speakers, the
age ranges between 31 and 86 years (mean 61.26 years) for the
males, and between 43 and 76 years (mean 60.76 years) for the
females. The data consists of vowels, isolated words, diado-
chokinetic words, sentences, and reading text. In this study,
three repetitions of the five Spanish sustained vowels are con-
sidered as in [3,18]. Further details of the database can be found
in [38, 39].

4.2. Evaluation metrics

The primary evaluation metric is the detection accuracy. As
an additional metric, the F1-score is also reported. The F1-
score balances between false positives and false negatives which
makes it unbiased to the majority class.

4.3. Baseline features for comparison

The most popular speech features, namely MFCCs [19, 21, 24],
are used as the baseline features. The baseline system configu-
ration is similar to the proposed system. In the baseline system,
13-dimensional MFCCs are extracted using a hamming window
size of 20 ms and a shift of 10 ms. The mean normalized 13
static MFCC features are used to obtain 91 SDC features using
the 13-1-3-7 configuration which is similar to the configuration
used in our proposed system.

5. Results and discussion
Detection experiments are carried out with i-vectors ex-
tracted from six cepstral representations as follows: (1) 13-
dimensional MFCCs, (2) 39-dimensional MFCCs+∆ + ∆∆,
(3) MFCCs+SDC (i.e., the combination of 13-dimensional
MFCCs and the corresponding 91-dimensional SDC), (4) 13-
dimensional SFFCCs, (5) 39-dimensional SFFCCs+∆ + ∆∆,
and (6) SFFCCs+SDC (i.e., the combination of 13-dimensional
SFFCCs and the corresponding 91-dimensional SDC). These
systems are referred to, respectively, as: MFCCs, MFCCs+∆+
∆∆, MFCCs+SDC, SFFCCs, SFFCCs+∆ + ∆∆ and SF-
FCCs+SDC in this paper.

The detection results of the six systems described above
are reported in Table 1. From the table, it can be clearly seen
that all the systems using the proposed SFFCCs features (rows
4-6) perform clearly better than the baseline systems (rows 1-
3). Among the baseline systems, the MFCCs+SDC system per-
formed better than the other systems. Similarly, among the pro-
posed systems, the SFFCCs+SDC system performed better than
the other ones.

By comparing the results obtained with the static cepstral
coefficients, it was found that the proposed SFFCCs system out-
performed the baseline MFCCs system with an absolute im-
provement of 12%. Adding the first and second derivatives
to the static cepstral coefficients does not improve the perfor-
mance of the baseline MFCC-based system. However, adding
the first and second derivatives improved the performance of the
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Table 1: Detection performance (accuracy in % and F1-score
in %) for the baseline (MFCCs-based) and proposed (SFFCCs-
based) systems.

Features used for Acc. F1
deriving i-vectors

MFCCs 56.66 56.54
MFCCs+∆ + ∆∆ 55.00 54.44
MFCCs+SDC 64.66 64.26
SFFCCs 68.66 68.59
SFFCCs+∆ + ∆∆ 72.00 71.93
SFFCCs+SDC 73.33 73.32

proposed SFFCC-based system. Furthermore, it can be clearly
seen that by introducing the SDC features with the static cep-
stral coefficients improved the detection performance for both
the MFCC-based system (i.e., MFCCs+SDC) and the proposed
SFFCC-based system (i.e., SFFCCs+SDC). This shows, impor-
tantly, that using speech information extracted over a longer
context indeed helps improving the detection of PD. Between
the SDC-based systems, the proposed SFFCCs+SDC system
outperformed the baseline MFCCs+SDC system with an abso-
lute improvement of 9%. Overall, it is observed that the pro-
posed SFFCCs+SDC system performed better than any other
system. The better results obtained with the SFFCC-based
systems indicate the capability of SFF to capture the spectro-
temporal variations of speech.

The class-wise detection performance in terms of accu-
racy is given in Table 2 for healthy and Parkinsonian speech.
From the results, it can be observed that the baseline systems
(MFCCs, MFCCs+∆ + ∆∆ and MFCCs+SDC) are more ac-
curate in detecting healthy speech than Parkinsonian speech.
However, the proposed systems (SFFCCs, SFFCCs+∆ + ∆∆
and SFFCCs+SDC) detect Parkinsonan speech better than
the baseline systems. Among the baseline systems, the
MFCCs+SDC system is better than the other baselines. Sim-
ilarly, among the proposed systems, the SFFCCs+SDC is found
to be more accurate than the other systems.

Table 2: Class-wise accuracies (in %) for the baseline (MFCCs-
based) and proposed (SFFCCs-based) systems. HS: Healthy
speech, PS: Parkinsonian speech.

Feature representation HS PS

MFCCs 62.00 51.33
MFCCs+∆ + ∆∆ 66.00 44.00
MFCCs+SDC 75.33 56.67
SFFCCs 73.33 64.00
SFFCCs+∆ + ∆∆ 76.66 67.33
SFFCCs+SDC 75.33 71.33

From the results in Tables 1 and 2, it was observed that by
computing SDCs from the static cepstral coefficients (MFCCs
or SFFCCs) gave a clear improvement in detection perfor-
mance, and also lesser bias towards the healthy speech class.
Due to this observation, we investigated further the configura-
tions used in the SDC computation. More specifically, two im-
portant parameters d (the number of delays/advances from the
current frame) and K (the number of delta computations for
concatenation) were varied to study the effect of these parame-
ters on detection performance. The remaining two parameters
N (the dimension of the static cepstral coefficients) and p (the
shift between consecutive delta computations) were fixed to 13
and 3, respectively.

Tables 3 and 4 show the results obtained for varying the

Table 3: Detection performance (accuracy in % and F1-score
in %) obtained by varying the delay/advance parameter d (from
1 to 3) in the computation of SDC for the MFCCs+SDC and
SFFCCs+SDC systems.

Feature representation Acc. F1

MFCCs+SDC (13-1-3-7) 64.66 64.26
MFCCs+SDC (13-2-3-7) 60.00 59.78
MFCCs+SDC (13-3-3-7) 61.00 60.52
SFFCCs+SDC (13-1-3-7) 73.33 73.32
SFFCCs+SDC (13-2-3-7) 75.33 75.29
SFFCCs+SDC (13-3-3-7) 70.33 70.25

Table 4: Detection performance (accuracy in % and F1-score
in %) obtained by varying the delta computation parameter K
(from 5 to 8) in the computation of SDC for the MFCCs+SDC
and SFFCCs+SDC systems.

Feature representation Acc. F1

MFCCs+SDC (13-1-3-5) 60.66 60.36
MFCCs+SDC (13-1-3-6) 65.00 64.91
MFCCs+SDC (13-1-3-7) 64.66 64.26
MFCCs+SDC (13-1-3-8) 62.00 61.71
SFFCCs+SDC (13-2-3-5) 69.66 69.59
SFFCCs+SDC (13-2-3-6) 76.00 75.93
SFFCCs+SDC (13-2-3-7) 75.33 75.29
SFFCCs+SDC (13-2-3-8) 72.66 72.56

selected two parameters in configuring the SDC computation.
The d value was varied from 1 to 3 (see Tables 3), and it was
found that the baseline MFCCs+SDC system performed best
with d = 1 and that the proposed SFFCCs+SDC system per-
formed best with d = 2. By fixing the d value, K value was
varied from 5 to 8, and the results are given in Tables 4. From
the results shown in table, it can be observed that both the base-
line MFCCs+SDC system and the proposed SFFCCs+SDC sys-
tem performed best with K = 6. In summary, the best perfor-
mance for the MFCCs+SDC baseline system was achieved us-
ing the configuration 13-1-3-6 (65%) and the best configuration
for the proposed SFFCCs+SDC system was 13-2-3-6 (76%).
When comparing the best configurations for the baseline and
proposed systems, it is found that the proposed system gave an
absolute improvement of 11%.

6. Summary
In this study, we proposed to use single frequency filtering
cepstral coefficients (SFFCCs) for the detection of Parkinson’s
disease from speech. The detection experiments were car-
ried out with the sustained vowels from well-known PC-GITA
database. Experiments with the SVM classifier revealed that
the i-vectors derived from the proposed SFFCCs features out-
performed the i-vectors derived from the conventional MFCCs
features. Furthermore, by computing SDCs from the SFFCCs
(SFFCCs+SDC) resulted in an absolute improvement of 9%
compared to the baseline MFCCs+SDC features, indicating the
importance of temporal variations captured by SDC.

7. References
[1] L. Marsh, “Depression and parkinson’s disease: current knowl-

edge,” Current neurology and neuroscience reports, vol. 13,
no. 12, p. 409, 2013.

[2] L. V. Kalia and A. E. Lang, “Parkinson’s disease.” Current neu-
rology and neuroscience reports., Aug 2015.

[3] S. Arora, L. Baghai-Ravary, and A. Tsanas, “Developing a large

4974



scale population screening tool for the assessment of parkinson’s
disease using telephone-quality voice,” The Journal of the Acous-
tical Society of America, vol. 145, no. 5, pp. 2871–2884, 2019.

[4] M. Cernak et al., “Characterisation of voice quality of parkinsonâs
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