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Abstract

Huntington disease (HD) is a fatal autosomal dominant neu-

rocognitive disorder that causes cognitive disturbances, neu-

ropsychiatric symptoms, and impaired motor abilities (e.g., gait,

speech, voice). Due to its progressive nature, HD treatment re-

quires ongoing clinical monitoring of symptoms. Individuals

with the Huntingtin gene mutation, which causes HD, may ex-

hibit a range of speech symptoms as they progress from pre-

manifest to manifest HD. Speech-based passive monitoring has

the potential to augment clinical information by more contin-

uously tracking manifestation symptoms. Differentiating be-

tween premanifest and manifest HD is an important yet under-

studied problem, as this distinction marks the need for increased

treatment. In this work we present the first demonstration of

how changes in speech can be measured to differentiate be-

tween premanifest and manifest HD. To do so, we focus on one

speech symptom of HD: distorted vowels. We introduce a set of

Filtered Vowel Distortion Measures (FVDM) which we extract

from read speech. We show that FVDM, coupled with features

from existing literature, can differentiate between premanifest

and manifest HD with 80% accuracy.

Index Terms: Huntington disease, disordered speech, speech

feature extraction, vowel distortion

1. Introduction

Huntington disease (HD) is a fatal autosomal dominant neu-

rocognitive disorder that causes cognitive disturbances, neu-

ropsychiatric symptoms, and impaired motor abilities (e.g., gait,

speech, voice) [1–4]. Individuals who have a family history of

HD can undergo a gene test to learn if they carry the gene mu-

tation that causes HD (i.e., are gene-positive). Individuals who

are gene-positive will develop clinically significant symptoms

of HD, resulting in an HD diagnosis, typically in their mid-

40’s [5]. These individuals are considered premanifest before

the onset of these symptoms, and manifest after. No cure exists,

but timely diagnosis of HD (i.e., manifestation) coupled with

treatment allows individuals to manage their symptoms.

At-home passive symptom monitoring captures patient

health as it relates to real-world functioning [6]. Providing clin-

icians with this information can allow for a more timely diagno-

sis of HD and a better understanding of its progression for treat-

ment planning. Disordered speech is one symptom of HD, and

previous work has demonstrated changes in speech occur be-

fore an HD diagnosis, and become more noticeable as HD pro-

gresses. [7–10]. This suggests the potential of passively track-

ing speech symptoms to better understand HD progression.

Vowel distortion is one speech symptom of HD [11–13],

and tracking this symptom may augment passive monitoring.

However, methods of automatically quantifying vowel distor-

tion from speech have not been extensively explored. Kaploun

et al. extracted jitter and shimmer from a sustained vowel task to

characterize vowel distortion, and they demonstrated its preva-

lence as an HD symptom [7]. Works differentiating between

healthy and disordered speech (a range of conditions in the Kay

Elemetrics Disordered Voice Dataset [14]) have extracted mea-

sures of system stability from sustained vowel tasks, suggesting

the potential of stability measures for capturing vowel distor-

tion [14–17]. However, there is no guarantee that measures ex-

tracted from sustained vowel tasks can be applied to connected

speech. Vowels in connected speech differ because they are 1)

modified and often nonstationary due to coarticulation and 2)

shorter, which may pose problems for distortion measures that

rely on lengthy signals. Thus, to incorporate tracking of vowel

distortion into passive speech monitoring, we must assess how

these measures relate to HD when extracted from connected

speech. In this work we analyze read speech, which is one type

of connected speech and includes short vowel samples that are

modified due to coarticulation.

The novelty of this work is a new set of Filtered Vowel Dis-

tortion Measures (FVDM), which account for the nonstationari-

ties in connected speech and reliably measures vowel distortion

as it relates to HD. Supplementing features identified in previ-

ous work with FVDM, we present the first system to classify

premanifest versus manifest HD, doing so with 80% accuracy.

2. Related work

2.1. HD classification using speech

Previous works have demonstrated the potential of passively

monitoring speech to assist in managing neurocognitive disor-

ders such as Parkinson’s [18, 19] and Alzheimer’s [20–22]. In-

dividuals with HD exhibit similar speech symptoms, suggesting

the potential of monitoring speech to aid in managing HD.

Prior works in automatically classifying HD stages have not

studied how to differentiate between premanifest and manifest

HD, but they have differentiated between healthy controls and

individuals who are gene-positive. Kaploun et al. used speak-

ing rate from a reading passage and jitter and shimmer of a

sustained vowel to classify individuals as healthy controls or

premanifest, illustrating the subtle speech symptoms that may

occur even in the premanifest population [7]. Perez et al. used

speaking rate, pause information, and goodness of pronuncia-

tion features to classify individuals as healthy controls or gene-

positive [10]. In doing so, they demonstrated the difficulty

of differentiating between the premanifest and manifest sub-

categories: half of premanifest individuals were classified as

healthy controls, and the other half as gene-positive. To the best

of our knowledge, no work has focused on extracting speech

features to classify premanifest versus manifest HD.
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2.2. Vowel distortion

Vowel distortion is a prevalent symptom of HD [11–13]. Prior

works have quantified vowel distortion from sustained vowels

using a variety of perturbation measures, and used these mea-

sures to classify a range of disorders. As mentioned above,

Kaploun et al. used jitter and shimmer from a sustained vowel

task to differentiate between healthy controls and individuals

with premanifest HD [7]. Vaziri et al. extracted the correlation

dimension (CD) and the Maximal Lyapunov Exponent (MLE)

from sustained vowels, and used these measures to classify

voice disorders in the Kay Dataset [17]. Little et al. extracted

recurrence period density entropy (RPDE) and detrended fluctu-

ation analysis (DFA) from sustained vowels to more accurately

classify voice disorders in the Kay Dataset [15]. An open ques-

tion is if these measures can provide insight into manifest HD.

Furthermore, these previous works have only examined

measuring vowel distortion in sustained vowel tasks, potentially

limiting their applicability to connected speech. These tasks al-

low for the analysis of vowel distortion without needing to ac-

count for changes due to coarticulation, which is the influence

of surrounding phones on the vowel of interest. Coarticulation

may lead to changes in the vowel, including nonstationarities

(i.e., changing mean and variance) [15, 23], which limit the ap-

plicability of some existing vowel distortion measures. These

controlled tasks also allow for analysis on longer signals, and

the applicability of some measures may be further limited if

they do not scale to the short vowels within connected speech.

3. Data description

In this paper we use data collected as part of a study on acoustic

biomarkers for HD at the University of Michigan. The partici-

pants in this study provided speech samples that were recorded

at 44.1kHz with a Hosa XVM-102M XLR microphone. We use

two tasks: the sustained vowel, in which participants were in-

structed to hold the vowel /a/ for as long as possible, and the

Grandfather Passage (GFP). The GFP contains nearly all of the

phonemes of American English and is a standard reading pas-

sage used in assessing motor speech and voice disorders [24].

The data contains speech from 62 individuals, in which 31

are healthy controls and 31 are gene-positive. Gene-positive

individuals are assigned to specific HD stages (premanifest,

manifest early-stage, and manifest late-stage) using the Uni-

fied Huntington’s Disease Rating Scale (UHDRS) [25]. First,

the premanifest versus manifest labels are determined based on

the clinician-determined Diagnostic Confidence Level (DCL)

within the Total Motor Score (TMS) portion of UHDRS. DCL

ranges from 0 (no symptoms) to 4 (symptoms of HD with

>99% confidence). We label participants with a DCL of less

than 4 as premanifest, and participants with a DCL of 4 as man-

ifest. Within the manifest group, we label participants as early-

or late-stage based on their Total Functional Capacity (TFC)

scores [26]. TFC scores provide a clinician-rating of functional

capacity, and range from 0 (low functioning) to 13 (high func-

tioning). We label participants with a TFC score of 7-13 early-

stage and those with a TFC score of 0-6 as late-stage [10, 27].

This paper focuses on analyzing speech of gene-positive in-

dividuals. Of these participants, one was unable to hold the

sustained vowel. To provide a consistent comparison across ex-

periments, we exclude this participant from our analysis. Thus

in this paper we use data collected from 30 individuals: 12 pre-

manifest, 11 with early-stage HD, and 7 with late-stage HD. We

focus on differentiating between premanifest and manifest.

4. Methods

4.1. Data segmentation

We segment three vowel sample types: sustained vowels, short-

ened sustained vowels, and vowels extracted from the GFP. Ta-

ble 1 summarizes these samples.

We first analyze the sustained vowel recordings. In this task

participants were instructed to hold the vowel /a/ for as long as

possible and the interviewer provided an example. Recordings

varied in length (12.8s ± 8.5s), as some participants could hold

the vowel for longer than others. To enable a consistent compar-

ison, we segment two seconds of the vowel for each participant,

as in [16]. We drop the initial second of the sample, as during

this time participants were settling in to a stable vibration. A

similar assumption was made in [15]. We then choose to use

the beginning two seconds of the remaining sample. Thus, for

each participant, we extract the sustained vowel (SV) sample

from seconds 1-3 of their sustained vowel recording.

To analyze vowel distortion within read speech, we man-

ually segment the vowels from GFP recordings. We focus on

phones that closely resembled the sounds in SV, as this would

limit potential variation due to sound. More specifically, we ex-

tract the phones [❛] (as in the the second /a/ in “grandfather”),

[❡] (as in the final /a/ in “banana”), and [❝] (as in “small”). We

listen to each GFP recording to identify occurrences of these

phones, and then identify their endpoints by assessing changes

in the sound and associated spectrogram. We verify that the

sound of the resulting sample minimally contained surround-

ing phones. The number and length of samples vary by each

participant, as there were variations in pronunciation and noise,

making some occurrences of the phones difficult to segment.

Ultimately, we extract 11.6 ±1.7 vowel samples for each par-

ticipant, and these are 140ms ± 94ms in length. We refer to

these samples as GFP vowels (GFPV).

To understand the impact of vowel length versus vowel

changes within read speech, we sample an intermediate set of

vowels from SV, but of a length representative of GFPV. We

sample shortened sustained vowels (SSV) by choosing 10 seg-

ments of 140ms (the average length of GFPV) from each SV.

Table 1: Three types of vowel samples

Sample type Description

SV 2 seconds of holding the vowel /a/

SSV
10 randomly selected segments

from the SV, each 140ms

GFPV

The phones [❛], [❡], and [❝]

manually segmented from the

Grandfather Passage reading

4.2. Feature extraction

Baseline features. We first develop a set of baseline features

for the task of classifying premanifest versus manifest HD. In

prior work, Perez et al. extracted 252 features (81 relating to

speaking rate, 100 relating to pause information, and 71 relating

to goodness of pronunciation) from the GFP (for details, see

[10]). They demonstrated that these features could differentiate

between healthy individuals and gene-positive individuals with

87% accuracy, but did not focus on separating the premanifest

and manifest populations.
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Step 2

Separate additive trend 

component and calculate ACV

Additive component

Filtered signal

Step 1

Separate multiplicative trend 

component and calculate MCV

Multiplicative component

Partially filtered signal

Raw vowel signal

Step 3

Calculate VS of filtered signal

(HE calculated via R/S approach)

Figure 1: Pipeline for extracting Filtered Vowel Distortion Measures (FVDM). Note: MCV=multiplicative component variance,

ACV=additive component variance, VS=vowel stability, HE=hurst exponent, R/S=rescaled range

Vowel distortion measures overview. In the previous

works highlighted in Section 2.2, researchers extracted a range

of vowel distortion measures from sustained phonation: jitter

and shimmer, CD, MLE, RPDE, and DFA. In our preliminary

analysis, when extracted from GFPV, DFA was notably more

correlated with HD manifestation than other measures. Thus,

we limit our discussion of existing measures here to DFA.

In the remainder of this section we introduce the Hurst ex-

ponent (HE) and describe two types of vowel distortion mea-

sures derived from this: DFA and our proposed FVDM1. We

extract DFA from SV, SSV, and GFPV. FVDM are designed for

short segments of vowels, so we extract FVDM from SSV and

GFPV. For each participant we aggregate the values of all indi-

vidual vowels within SSV and GFPV with six statistics: mini-

mum, median, maximum, range, mean, and standard deviation.

Hurst exponent introduction. The HE is an index of se-

ries stability [28]. If we think of distorted vowels as “unstable,”

we can use the HE to quantify this. An HE closer to 1 indicates

more stability, and an HE closer to 0 indicates more distortion.

This level of interpretability makes the HE a desirable measure.

The traditional approach for extracting the HE is rescaled range

analysis (see [28]). This approach involves dividing the sig-

nal into small windows, evaluating the deviation from the mean

within each window, and calculating the average rescaled range

(R/S) across all windows of that size. This process is repeated

for windows of larger sizes. The slope of the line fit to the graph

of log(average R/S) versus log(window size) is the HE. In gen-

eral this process expects that within each window the signal is

stationary. DFA, described below, is a technique that can be

used when stationarity does not hold within each window, and

has previously been applied to speech signals [15]. However,

as we also describe below, despite potential nonstationarities in

small windows, we find that the traditional R/S approach gen-

erally produces a linear log-log plot. Thus we also explore the

use of this approach to measure speech stability.

Detrended fluctuation analysis. DFA is a method for es-

timating the HE from data when nonstationarities are present

[29]. The obtained measure is also referred to as DFA. The pri-

mary difference between DFA and the R/S approach is that DFA

removes trends within each window by fitting and adjusting for

low-order polynomials. We extract DFA using Python [30].

Filtered vowel distortion measures. We propose a set of

FVDM that can describe the distortion of vowels within con-

nected speech even when nonstationarities are present. Our

pipeline for extracting these measures, which is summarized in

Figure 1, first quantifies and corrects for the multiplicative and

additive trends causing the nonstationary, and then calculates

the HE of the remaining signal using the R/S approach. The

main idea is that the trend components removed by DFA may

themselves contain relevant information about HD manifesta-

1Code available at https://github.com/amritkromana/FVDM

Figure 2: IMF Variance for SSV

tion. As a result, we aim to quantify these trend components,

while also using the HE to estimate stability. The proposed

pipeline provides three FVDM for each vowel: multiplicative

component variance (FVDM-MCV), additive component vari-

ance (FVDM-ACV), and vowel stability (FVDM-VS).

Step 1: Removing the multiplicative trend. A multiplicative

trend in speech indicates changes in volume. We hypothesize

that individuals with manifest HD will have a higher variance

in their volume. We address this trend by first calculating the

average decibels relative to full scale (dBFS, a measure of am-

plitude) of the vowel. We then apply a convolutional filter, with

a window of 25ms and a shift of 10ms, to calculate the average

dBFS within each window. We calculate the variance of these

dBFS values and save it as FVDM-MCV. We then correct for

this trend by applying the necessary gain or decay to each win-

dow so that it matches the average dBFS of the entire vowel.

Step 2: Removing the additive trend. An additive trend

in speech is a potential artifact of coarticulation. We hypoth-

esize that individuals with manifest HD display different pat-

terns of coarticulation, which will be evident in the variance of

this trend. We address the additive trend using empirical mode

decomposition-based filtering. Wu et al. demonstrated that ad-

ditive trends could be removed by decomposing the signal into

intrinsic mode functions (IMFs) [31]. Certain IMFs will con-

tain signal information, and others will contain trend informa-

tion. Chatlani et al. provide methods to associate IMFs with

each component for voiced sounds, which have distinct IMF

properties [32]. They demonstrated how the variance of each

IMF component drops after the fourth IMF, and suggest that the

first four IMFs contain relevant signal information. Figure 2 il-

lustrates that within our SSV data the first six IMFs have higher

variance, after which variance drops. Based on this analysis, we

decompose the signal into IMFs [33], sum the first six IMFs to

reconstruct the stationary vowel, and sum the remaining IMFs

as the additive component. We calculate the variance of this

additive component and save it as FVDM-ACV.

Step 3: Calculating stability. Finally, we explore using the

traditional R/S approach to calculate the HE of the filtered sig-

nal [30]. Although the filtering process corrects for stationarity

across the entire signal and not necessarily within small win-

dows, we find the R/S approach generally produces a linear log-

log graph, suggesting we can use the slope of this graph without

detrending in the small windows. This gives us FVDM-VS.
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5. Results

5.1. Feature correlations across sample types

Table 2 lists the correlations between the vowel distortion mea-

sures extracted from each sample type and the manifest la-

bels. For both DFA and FVDM we see that the correlations

are highest when measured from GFPV, suggesting that vowel

distortion is more pronounced within read speech. We partic-

ularly highlight the high correlation of 0.75 between the range

of FVDM-VS and the manifest label, suggesting that individu-

als with manifest HD exhibit a wider range of vowel distortion

within speech when compared to premanifest individuals. The

correlations for FVDM-ACV are not as strong as hypothesized,

but we find a significant negative correlation between the min-

imum FVDM-ACV and the manifest label, which is consistent

with less articulator movement due to disease manifestation. Fi-

nally, we find that several statistics over FVDM-MCV are posi-

tively correlated with manifest HD, suggesting that individuals

with manifest HD exhibit more volume variation within vowels.

Table 2: Spearman correlation coefficients between vowel

distortion features and manifest label for each sample

type. Significant correlations (p < 0.05) are in bold.

Note: SV=sustained vowel, SSV=shortened sustained vow-

els, GFPV=Grandfather Passage vowels, DFA=Detrended

fluctuation analysis, FVDM=Filtered vowel distortion mea-

sures, VS=Vowel stability, ACV=additive component variance,

MCV=multiplicative component variance.

Sample Stat DFA
FVDM

VS ACV MCV

SV -0.24

SSV

min -0.23 -0.30 -0.13 0.11

med -0.26 -0.15 -0.06 0.31

max -0.07 0.12 0.03 0.39

range 0.22 0.37 0.21 0.33

mean -0.20 -0.17 -0.06 0.35

std 0.23 0.37 0.20 0.31

GFPV

min -0.63 -0.69 -0.41 0.04

med -0.51 -0.36 -0.20 0.12

max -0.19 0.00 -0.14 0.47

range 0.61 0.75 0.09 0.48

mean -0.43 -0.46 -0.20 0.35

std 0.58 0.71 -0.06 0.47

5.2. Classifying manifest HD

We explore the feasibility of detecting HD manifestation from

speech by training a logistic regression model to predict if a

speaker has premanifest or manifest HD. We train the model

using a leave-one-subject-out paradigm. Our baseline feature

set includes the features from [10] and we augment this set

with DFA and FVDM. We use DFA and FVDM extracted from

the GFPV samples because the baseline features were extracted

from the GFP, and this provides the most insight into how to

passively predict manifestation from connected speech. We per-

form z-score normalization on each of the features. We use

three-fold cross-validation over the training data to choose the

number of features (5, 10 or 15, selected using maximal rele-

vance minimum redundancy (mRMR) [34]) and the inverse reg-

ularization parameter (0.1 or 1). Table 3 lists classification ac-

curacies averaged over 10 random initializations of the model.

Table 3: Accuracy in classifying premanifest vs manifest HD:

mean and std across all subjects and 10 model initializations

Features Classification Accuracy

Baseline 0.63 ± 0.04

Baseline+DFA 0.68 ± 0.04

Baseline+FVDM 0.80 ± 0.03

Table 4: Confusion matrix from Baseline+FVDM manifest HD

classification experiment. Rows=label, columns=prediction.

Premanifest Manifest

Premanifest 0.81 0.19

Early-stage manifest 0.30 0.70

Late-stage manifest 0.03 0.97

While DFA improves baseline classification, FVDM pro-

vide a greater improvement. Table 4 illustrates how the Base-

line+FVDM model classifies late-stage manifest with high ac-

curacy, but has more difficulty differentiating between preman-

ifest and early-stage manifest.

Further analysis into the Baseline+FVDM model shows

that mRMR selects FVDM-VS range and standard deviation

for each training fold. The learned β parameters for FVDM-VS

range and standard deviation are significant for 65% and 58% of

training folds, respectively. We also confirm that these β param-

eters are interpretable. The positive β parameters illustrate that

individuals with manifest HD exhibit a higher range of vowel

distortion within speech compared to individuals with preman-

ifest HD (β = 0.62 ± 0.30 for range and β = 0.42 ± 0.13

for standard deviation). While Table 2 demonstrates that other

statistics over FVDM-VS and some statistics over FVDM-MCV

and FVDM-ACV are correlated with the manifest label, mRMR

only includes these features in a small number of cases.

FVDM provide information that is supplementary to exist-

ing speech features, and improve manifest HD classification ac-

curacy from 63% to 80%. Furthermore, we observe that the re-

lationship between FVDM and HD manifestation is consistent

with understandings of vowel distortion within HD [11–13].

6. Conclusions

In this paper we present FVDM, a small and human inter-

pretable feature set. We show that these features can classify

HD manifestation with 80% accuracy. These results bring us

closer to being able to passively detect HD manifestation.

In future work we will analyze how FVDM compare across

different vowels. We will then explore how the FVDM pipeline

can be coupled with vowel detection methods to automatically

extract FVDM from spontaneous speech (as opposed to read

speech). Finally, we will examine the use of FVDM to classify

other disorders which present themselves with distorted vowels.
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