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Abstract
A fast-growing area of mental health research is the search for
speech-based objective markers for conditions such as depres-
sion. One vital challenge in the development of speech-based
depression severity assessment systems is the extraction of
depression-relevant features from speech signals. In order to de-
liver more comprehensive feature representation, we herein ex-
plore the benefits of a hybrid network that encodes depression-
related characteristics in speech for the task of depression sever-
ity assessment. The proposed network leverages self-attention
networks (SAN) trained on low-level acoustic features and deep
convolutional neural networks (DCNN) trained on 3D Log-Mel
spectrograms. The feature representations learnt in the SAN
and DCNN are concatenated and average pooling is exploited to
aggregate complementary segment-level features. Finally, sup-
port vector regression is applied to predict a speaker’s Beck De-
pression Inventory-II score. Experiments based on a subset of
the Audio-Visual Depressive Language Corpus, as used in the
2013 and 2014 Audio/Visual Emotion Challenges, demonstrate
the effectiveness of our proposed hybrid approach.
Index Terms: depression detection, DCNN, self-attention,
complementary features

1. Introduction
Major depressive disorders (MDDs) are highly prevalent in
modern society [1]. Early interventions, aimed at predicting the
onset of MDD, are an essential means of helping to reduce this
burden. As an attempt to aid in MDD diagnosis, the problem
of automatically detecting and monitoring depression through
speech signal analysis has recently attracted considerable atten-
tion [2]. This work focuses on the use of the audio domain in
order to estimate the clinical depression score of an individual,
given an (often lengthy) audio recording of their voice.

A considerable challenge currently being faced by re-
searchers in the field of depression analysis is that of how best
to extract discriminative, robust, and depression-salient features
from the acoustic content of a speech signal. As in most ar-
eas of intelligent signal analysis, deep neural networks have be-
come the predominant approach to automated depression anal-
ysis for discriminative representation learning [3, 4]. Many
recent works in this field have leveraged either recurrent neu-
ral networks (RNNs) or deep convolutional neural networks
(DCNNs) as feature extractors, with varying degrees of suc-
cess [5, 6, 7, 8, 9].

There has been increasing interest in incorporating both
RNNs and DCNNs into a single architecture in order to cap-
ture both long-term and local dependencies [10, 11]. In [7],
for example, a hybrid network combining CNN and long short-
term memory (LSTM) RNN, was employed for speech-based
depression severity assessment; results demonstrated that this
set-up is able to outperform a CNN-only system. Similarly,
in [12], a system comprising a gated convolutional neural net-
work (GCNN) followed by an LSTM layer demonstrates the ef-
fectiveness of such hybrid methods for depression recognition.

However, a major drawback of including RNNs in such
scenarios is that they are difficult to parallelise and not time-
efficient [13]. Furthermore, even with the addition of memory
cell structures such as LSTM, RNNs struggle to capture long-
range dependencies [14]. This issue becomes particularly pro-
nounced in depression analysis, where files can be upwards of
15 minutes in length [2, 15].

Self-attention networks (SAN) [16], which utilise the atten-
tion mechanism as the basic building block, can help in cap-
turing long-term contextual dependencies. SANs have demon-
strated their ability to capture contextual dependencies in sev-
eral natural language processing (NLP) tasks [16, 17, 10, 18]
and, more recently, have produced state-of-the-art SER re-
sults [19]. Despite having certain advantages over RNNs, such
as faster training and inference times due to parallelisable com-
putation and a lower number of trainable parameters, the suit-
ability of SAN for identifying depression through speech anal-
ysis remains understudied.

Herein, we propose a hybrid network based on a SAN and
a DCNN to extract complementary features from acoustic low-
level descriptors (LLDs) and 3D log Mel spectrograms respec-
tively. The core idea behind the SAN is to model the inner
dependencies between elements with different positions in the
learned feature sequence, which should enhance the learning
of depression-salient information. To the best of the authors’
knowledge, this is the first time that SAN has been deployed for
the task of speech-based depression severity assessment.

Through the action of the DCNN, the hybrid network be-
comes able to retain high resolution of temporal structure in
feature learning. Inspired by the positive results of 3D log Mel
spectrum features in SER [20, 21], we employ log-Mel, deltas,
and delta-deltas as 3D input to the CNN model. We utilise
this 3D input as the delta; moreover, the delta-delta features
are capable of effectively capturing the effects of depression in
speech [22], while also being less susceptible to the impact of
non-relevant acoustic factors.
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Our two main contributions can be summarised as follows:
i) We propose a hybrid network that combines self-attention net-
works with DCNN to produce discriminative representation for
depression analysis from speech; ii) We conduct extensive ex-
periments that demonstrate the effectiveness of this approach.

2. Proposed Method
Our proposed hybrid model consists of three components (Fig-
ure 1). The first is the SAN model, trained on low-level acoustic
features; the second is the DCNN model, which we train to cap-
ture the spatial information from 3D log-Mel spectrograms; the
third component is the depression severity prediction module, in
which average pooling is applied to aggregate complementary
features into utterance-level features, which are in turn utilised
as the input of a support vector regressor (SVR) to predict the
depression score (Figure 2). The remainder of this section cov-
ers two key aspects of our model, namely the SAN model (Sec-
tion 2.1) and the generation of the 3D log-Mel spectrograms
(Section 2.2).

2.1. Self-attention network

Self-attention is an attention technique based on an encoder-
decoder structure that does not employ any form of recurrence.
Instead, it uses weighted correlations between the elements of
the input sequence [16]. In this paradigm, the encoder maps
an input sequence into several attention matrices, while the
decoder uses these matrices to generate a new output token.
The Transformer, the model that uses self-attention, has been
demonstrated to achieve state-of-the-art performance in several
NLP tasks, with a computing cost that is one or two orders of
magnitude (depending on the size of the model) lower than that
of conventional RNNs [17, 10, 18]. Note that this section fo-
cuses only on the implementation of the encoder, as a decoder
is not required in our proposed hybrid network.

Self-attention calculates queries, keys (properties of the in-
put) and values (the output) for the frames in a given hidden se-
quence H through linear transformation of the input sequence
X , as follows:

Q = WqX;K = WkX;V = WvX, (1)

where the matrices Q,K, V denote the set of queries, keys and
values of an input/output sequence, while Wq , Wk, Wv repre-
sent the learnt linear operations. A scaled dot-product opera-
tion is performed on the query and key to obtain the similarity
weights, which are then normalised by the softmax function.
The attention matrix is calculated as follows:

Z = softmax(
QKT

√
dk

)V, (2)

where dk is a scaling factor, set as the dimensionality of K.
The Z is the attention matrix (N × dk), where N is the

number of elements in the input sequence. In order to obtain
one-dimensional feature representations {s1, s2, ..., sdk}, we
perform an additional operation in the last self-attention block:
i. e., the SA1 of Figure 1 and sj can be calculated as follows:

sj =

∑N
i=1 Zi,j

N
; j = 1, 2, ..., dk. (3)

Compared to multi-head attention, the advantages of single-
head self-attention are its lower memory usage and fewer hyper-
parameters [23]. Accordingly, in this work, we apply two sep-
arated single-head self-attention blocks rather than a two-head
self-attention model.

2.2. 3D Log-Mels Spectrogram Generation

In recent years, applying CNN to capture information in the
spectrograms for depression detection purposes has achieved
excellent performance [9, 24]. However, static spectrograms
can contain personalised information about the speaker, which
can negatively influence the performance of depression detec-
tion from speech [21, 22]. Inspired by the successful use of 3D
log-Mel spectrograms in SER [20], our hybrid system also uses
log-Mels, together with deltas and delta-deltas, as the input to
the DCNN.

First, we split raw speech signal into short frames with
Hamming windows of 25ms and a 10ms shift. The power spec-
trum for each frame is then calculated and passed through the
Mel-filter bank i to produce output pi. A logarithmic operation
is then conducted on pi to obtain the log-mels spectrogram mi.
Finally, we calculate the md

i feature, which is the deltas of mi

via formula (4), while the value of N is set to 3. Similarly, the
delta-deltas features mdd

i are calculated by taking the derivative
of the deltas, as shown in Equation (5).

md
i =

∑N
n=1 n(mi+n −mi−n)

2
∑N

n=1 n
2

(4)

mdd
i =

∑N
n=1 n(m

d
i+n −md

i−n)

2
∑N

n=1 n
2

(5)

After completing the above calculations, we obtain a three-
dimensional feature representation X ∈ Rt×f×c as the input of
the DCNN model, where t denotes the length of frame, while
f for the number of Mel-filter banks. In our work, f is set to
80, and c is 3, representing the static, deltas and delta-deltas
log-mels spectrogram respectively.

3. Experiments and Results
To demonstrate the effectiveness of the proposed methods, we
performed a set of experiments on the AVEC 2013 [25] and
AVEC 2014 [26] depression databases reported next.

3.1. Experimental Corpus

The AVEC 2013 depression dataset includes 340 video record-
ings of 292 subjects performing human-computer interaction
tasks while being recorded by audio-visual sensors. The aver-
age subject age is 31.5 years with a range of 18 to 63 years. The
length of each recording varies from 20 to 50 minutes, with an
average duration of 25 minutes per recording. The total duration
of all recordings is 240 hours. The 16-bit audio was recorded at
a sampling rate of 41KHz. More detailed information regarding
the AVEC 2013 depression corpus is presented in Table 1.

We also use the AVEC 2014 depression database for our
evaluation, which is a subset of the AVEC 2013 depression cor-
pus. This subset comprises 150 videos of task-oriented depres-
sion data recorded in a human-computer interaction scenario.
The total number of subjects is 84, ranging from 18 to 63 years
in age.

The level of depression in the AVEC 2013 and AVEC 2014
depression datasets is labelled with a single value per record-
ing using a standardised self-assessed subjective depression
questionnaire, the Beck Depression Inventory-II (BDI-II) [27],
within the range [0, 63]. As BDI-II value prediction is a re-
gression task, the accuracy metric for the challenge is the Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE).

3.2. Features

In this paper, we use 3D log-mels spectrogram as the input of
DCNN and LLDs for the self-attention network. The 3D feature
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Figure 1: Frame of the proposed hybrid network for extracting segment-level complementary features. SA and FC provide the self-
attention and the fully connected layer respectively.
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Figure 2: The process of aggregating features and detecting de-
pression levels.

(the static, deltas and delta-deltas of the log-Mel spectrum from
40 filterbanks) is normalised by the global mean and the stan-
dard deviation and then fed into the DCNN model. Meanwhile,
as a commonly used feature set for the task of speech emotion
recognition, the extended Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS) [28] is extracted using the openSMILE
toolkit [29] with a window size of 25 ms and a 10 ms stride,
then fed into the self-attention network.

3.3. Model Parameters

As shown in Fig. 1, there are two key components in our pro-
posed hybrid network, namely the DCNN and the self-attention
model. For the DCNN model, there are 32 kernels in the first
CNN layer and 64 kernels in the second CNN layer. All of
these kernel sizes are 3× 3 and the padding mode is valid. Af-
ter each CNN layer, there is a max pooling layer with a size of
2× 2. The number of neurons in the two fully connected layers
is 1024. For the self-attention model, there are 512 neurons in
each fully connected layer. Moreover, after every CNN layer
and self-attention module, there is a batch normalization layer

Table 1: Summary of AVEC 2013 Depression Corpus.

Partition Numbera Maxb Minc Averaged Score Range

Train 50 27min20s 8min5s 14min20s 0-44
Dev. 50 23min55s 14min20s 14min20s 0-45
Test 50 23min57s 5min15s 15min57s N/A

a Number denotes the number of files.
b Max denotes maximum length.
c Min denotes minimum length.
d Average denotes average length.

and relu activation function. The FC1 and FC3 are followed
by a dropout layer in which the dropout rate is 0.5.

Note that these two components are trained separately and
the objective functions are both RMSE. When the training of
these two components is complete, the outputs of FC2 and
FC4 are concatenated to create the segment-level complemen-
tary features.

Due to the smaller size of the available corpora, we also
use a augmentation method that sets a window with a size of
500 frames and 50 % overlap to divide the raw speech in the
training set into segment-level speech in this work.

3.4. Results and Discussion

In this section, we present the experimental results of different
pooling strategies, then compare the performance of our method
with that of previous work.

3.4.1. Performance comparison of different pooling strategies

Firstly, a comparison of the results of the two pooling strategies
(i. e.average-pooling and max-pooling) on the test set of AVEC
2013 and AVEC 2014 is presented in Table 2 and Table 3 in
terms of RMSE and MAE. We can observe that our proposed
hybrid network consistently achieves the best performance with
average-pooling on both datasets. Moreover, the performances
of SAN on both datasets are better than that of the Bidirectional
LSTM RNN (BLSTM)-based approach, regardless of which
kind of pooling strategy was used in our hybrid model. This re-
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Table 2: Performance comparison of different pooling strategies
on the test set of AVEC 2013.

Method Average-pooling Max-pooling

RMSE MAE RMSE MAE

BLSTM 10.64 8.22 10.94 8.43
DCNN 10.30 7.83 10.90 8.76

BLSTM-DCNN 10.41 8.14 10.90 8.74
SAN 9.85 7.55 10.28 8.08

Proposed method 9.65 7.38 10.82 8.65

Table 3: Performance comparison of different pooling strategies
on the test set of AVEC 2014.

Method Average-pooling Max-pooling

RMSE MAE RMSE MAE

BLSTM 10.45 8.41 10.69 8.67
DCNN 10.28 8.45 10.73 8.91

BLSTM-DCNN 10.18 8.33 10.71 8.81
SAN 9.87 8.14 10.54 8.62

Proposed method 9.57 7.94 10.63 8.77

sult supports our hypothesis that SAN can be more helpful than
the BLTM RNN model in depression analysis. Furthermore,
it has been demonstrated that the combination of DCNN and
SAN features outperforms each feature taken separately when
average-pooling was employed in our hybrid model. This ob-
servation demonstrates the effectiveness of our proposed model
when applied to the task of speech-based depression analysis.

Considered as a whole, the performance of average-pooling
is obviously better than that of max-pooling. However, the
experimental results of our proposed model are slightly lower
than those of SAN when max-pooling was used to aggregate
the segment-level complementary features. The main reason
for this is that the maximum value of the segment-level features
are unable to fully and explicitly represent the segment-level in-
formation. Thus, the average-pooling strategy, which performs
well at modeling the relationship between segment-level fea-
tures and utterance-level features, is more suitable for the task
of speech-based depression detection.

3.4.2. Performance comparison with other models

The effectiveness of our hybrid framework can be highlighted
through comparison with other key results obtained on the
AVEC 2013 and AVEC 2014 depression corpora in the liter-
ature (Table 4 and Table 5). It can be observed that the best
MAE (7.38) and RMSE (9.65) on the AVEC 2013 test set, as
well as the best MAE (7.94) and RMSE (9.57) on the AVEC
2014 test set, were achieved by our proposed hybrid network.

Furthermore, we observed that, for the test sets of both the
AVEC 2013 and AVEC 2014 depression corpora, our proposed
model outperforms the AVEC 2013 or AVEC 2014 audio base-
line. Moreover, as shown in Table 2 and Table 3, although the
performance of the BLSTM, DCNN, SAN and BLSTM-DCNN
models is inferior to that of the proposed hybrid model, it still
surpasses that of the AVEC 2013 or AVEC 2014 audio base-
line and the multi-modal work proposed in [30, 31] in terms of
RMSE and MAE. Meanwhile, our best results are superior even
to those obtained by the AVEC 2014 Audio-Video baseline [26]

for RMSE.

Table 4: Performance comparison between the proposed model
and other models on the test set of AVEC 2013.

Methods RMSE MAE

AVEC 2013 Audio Baseline [25] 14.12 10.35
PLS regression [30]* 10.96 8.72

DCNN [9] 10.00 8.20
CNN-LSTM-SVR [7] 9.79 7.48

Proposed method 9.65 7.38
* Indicates a multimodal system was utilised.

Table 5: Performance comparison between the proposed model
and other models on the test set of AVEC 2014.

Methods RMSE MAE

AVEC 2014 Audio Baseline [26] 12.56 10.03
AVEC 2014 Audio-Video Baseline [26] 9.89 7.89

Fisher Vector Encoding [31]* 10.25 8.40
DCNN [9] 9.99 8.19

CNN-LSTM-SVR [7] 9.66 8.02
Proposed method 9.57 7.94

* Indicates a multimodal system was utilised.

Among all the works compared here, the study that most
closely resembles our proposed model was presented by Niu et
al. [7]. In their work, a hybrid model similar to our method was
also proposed for the task of speech-based depression analysis.
However, these authors only used the Mel Frequency Cepstrum
Coefficient (MFCC) as the input to the hybrid network, which
may have resulted in a lot of valuable information contained in
the speech signal being missed.

4. Conclusions
In this work, we presented a novel hybrid network, which com-
bines DCNN and self-attention networks, for the task of de-
pression severity detection. This approach is highly suitable for
speech-based depression detection, as it uses a hybrid frame-
work capable of taking advantage of DCNN and SAN. Exper-
imental results achieved on the AVEC 2013 and AVEC 2014
depression datasets verified the suitability of this approach and
demonstrate that self-attention is a better building block com-
pared to recurrence when conducting depression analysis from
speech. Future work will explore the effectiveness of proposed
hybrid network in other speech-related tasks.
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