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Abstract
The current level of global uncertainty is having an implicit effect
on those with a diagnosed anxiety disorder. Anxiety can impact
vocal qualities, particularly as physical symptoms of anxiety
include muscle tension and shortness of breath. To this end, in
this study, we explore the effect of anxiety on speech - focusing
on four classes of sustained vowels (sad, smiling, comfortable,
and powerful) - via feature analysis and a series of regression
experiments. We extract three well-known acoustic feature sets
and evaluate the efficacy of machine learning for prediction of
anxiety based on the Beck Anxiety Inventory (BAI) score. Of
note, utilising a support vector regressor, we find that the effects
of anxiety in speech appear to be stronger at higher BAI levels.
Significant differences (p < 0.05) between test predictions of
Low and High-BAI groupings support this. Furthermore, when
utilising a High-BAI grouping for the prediction of standard-
ised BAI, significantly higher results are obtained for smiling
sustained vowels, of up to 0.646 Spearman’s Correlation Co-
efficient (ρ), and up to 0.592 ρ with all sustained vowels. A
significantly stronger (Cohens d of 1.718) result than all data
combined without grouping, which achieves at best 0.234 ρ.
Index Terms: anxiety disorders, sustained vowels, beck anxiety
inventory, machine learning, wellbeing.

1. Introduction
Mental health can have a considerable impact on an individual’s
general wellbeing. In modern society, the rate of diagnosis for
mental disorders characterised as anxiety disorders is increasing,
particularly in urban environments [1]. Anxiety disorders refer
to a subgroup of disorders which range in their severity and
includes disorders such as, generalised anxiety disorder (GAD),
obsessive-compulsive disorder (OCD), and post-traumatic stress
disorder (PTSD). The definition of GAD (henceforth, anxiety)
is, excessive worry and apprehension occurring more days than
not [2]. Feelings of uncertainty often exasperate anxiety, and
the current global pandemic of SARS-CoV-2 now contributes to
this [3], particularly from an economic standpoint [4]. With this
in mind, mechanisms to monitor and treat anxiety effectively are
needed, among both general society [5], as well as for health
care professionals [6].

The World Health Organisation (WHO) reports that the pro-
portion of the global population with an anxiety disorder (as of
2015) is ca. 3.6 %, and women have a higher rate of diagnosis [7].
Known physical markers include, stomach pain and shortness
of breath [8]. The Beck Anxiety Inventory (BAI) [9] is one

established evaluation metric for obtaining an individual’s level
of anxiety. Criteria for BAI cover mental and physical charac-
teristics and aspects which may have an effect on the vocal tract
include, difficulty in breathing and feeling of choking.

Extensive and longstanding behavioural research has been
made on the effect of anxiety on speech [8] and features such
as, speech disturbances and varied speech-rate are amongst the
characteristics of speech with which those with high anxiety
tend to present [10]. Previous research suggests a redundancy
in the lexical content of speech from individuals with anxiety
[11]. Unlike conditions such as depression, in which research to-
wards natural language processing approaches is becoming wide
spread [12]. Additionally, acoustic aspects of speech, including
disturbances and hesitations may hold meaningful information
relating to anxiety [13].

In the short-term, effects of anxiety are prominent during
public speaking, particularly by social phobics. In [14], an acous-
tic analysis was made of parameters including pitch, loudness,
and voice quality, finding that perceived and self-assessed lev-
els of anxiety decreased in correlation with such aspects after
speaking. Similarly in [15], the authors confirm the illusion of
transparency effect, where speakers tend to believe the promi-
nence of anxiety in their voice is more apparent to others.

Despite much behavioural research in this area, computa-
tional approaches for monitoring and or predicting levels of
anxiety are minimal. Indeed, to the best of the authors’ knowl-
edge, this study is the first to explore prediction of anxiety from
adult speech. In [16], the efficacy of machine learning to monitor
the speech of children with internalising disorders (including
depression and anxiety) was explored. Findings show that clas-
sical acoustic approaches utilising MFCCs, and support vector
machines are effective to a high degree. To this end, acous-
tics feature extraction toolkits including OPENSMILE and DEEP
SPECTRUM have shown success for predicting similar conditions
including depression [17] and stress [18].

In this study, we explore features of anxiety which may be
prominent in speech and evaluate the efficacy of predicting anxi-
ety without lexical content. We utilise various emotional classes
of sustained vowels (sad, smiling, comfortable, and powerful)
from the Düsseldorf Anxiety Corpus (DAC) and process the data
into groupings of Low and High anxiety. As well as this, we
group the aforementioned symptoms from the BAI which may
explicitly effect the vocal tract – implementing both brute-force
and state-of-the-art features, in a conventional support vector
regressor paradigm.
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2. Düsseldorf Anxiety Corpus
For this study, we utilise the Düsseldorf Anxiety Corpus (DAC),
collected by members of the Institute of Experimental Psy-
chophysiology, Düsseldorf, Germany. The corpus is a dataset
of individuals performing various vocal exercises, featuring 252
speakers aged 18 to 68 years old (average of 31.5 years, standard
deviation of 12.3 years). The files are categorised into different
types of phonations, including sustained vowels, read, and free
speech. The reference data is formed by measurements which
includes the Beck Anxiety Inventory (BAI) [9].

We have chosen only the sustained vowels from DAC to
limit the scope of the study and explore specifically the effect
of anxiety without lexical content, as this has shown in previous
research to be less important for anxiety [11]. For this study, we
utilise four classes of sustained a vowels:

• Sad – a sad phonation of vowel [a] performed with low
intensity and frowning face.

• Smiling (Smile) – a smiling phonation of vowel [a] in
high intensity and smiling face.

• Comfortable (Comf) – a comfortable phonation of vowel
[a] in comfortable intensity.

• Powerful (Power) – a loud phonation of vowel [a] in loud
intensity.

These specific classes of sustained vowels are chosen due
to their relation to anxiety literature – For example, negative
emotion can often be masked as positive [19] (sad, smiling) and
typically those with an anxiety disorder are less self-confident
[20] (comfortable, powerful).

All speakers in DAC have been evaluated under the Beck
Anxiety Inventory (BAI) questionnaire [21]. During the BAI,
individuals answer a series of questions relating to their wellbe-
ing, on a scale from 0–3. A total score of under 21 indicates low
anxiety, and a score of above 36 indicates potentially concerning
levels of anxiety. Based on these responses, we partitioned the
data into two groups: Low-BAI vs High-BAI with values above
21 set as High-BAI. From the criteria in the BAI, a feeling of
choking and difficulty in breathing are the only specific questions
which may affect speech, and therefore we also group data into
the presence or absence of these symptoms.

2.1. Data processing
We evaluated the dataset and selected a total of 239 speakers
(69 males), which we then partitioned into train, development,
and test (cf. Table 1). The audio was converted to 16 kHz, 16 bit,
mono, WAV. At the beginning and end of many instances was si-
lence. To remove this, we utilise the Librosa toolkit and automat-
ically trim each file. The original data duration was 4 h:30 :m24 s
reduced to 3 h:00 m:40 s. Within the corpus, the absolute BAI
rating ranges from 0–60 and to avoid weighting for particular
speakers, these raw annotations were standardised to zero mean
and unit standard deviation, resulting in a range of -1.11 – +4.36.

3. Acoustic Analysis
The non-lexical acoustic information of speech is highlighted
as having a stronger effect speech of high anxiety [11]. With
this in mind, before proceeding with machine learning experi-
ments, we evaluate some fundamental acoustic aspects of the
samples. We extract the standard deviation (STD) of Pitch F0
(Hz), intensity (dB), and Harmonic-to-Noise-Ration (HNR) (dB)
for each sample in the subset of the corpus used for our exper-
iments. We then compare these in the Low-BAI and High-BAI
pairings, through an analysis of effect size using Cohen’s d, and
prior to this implementing a two tailed T-test, rejecting the null
hypothesis at a significance level of p < 0.05.

Table 1: Speaker (#) independent partitions, Train,
(Dev)elopment, and Test. Gender (M)ale:(F)emale. sus-
tained vowel type, BAI class (Low, High), feeling of choking (No
symptoms, Has symptoms), difficulty in breathing (No symptoms,
Has symptoms), are reported on the audio (Inst)ance level.

Train Dev Test
∑

# 74 97 68 239
M:F 26:48 25:72 19:49 69:170
Inst. 614 511 440 1565

Sustained Vowel Type

Sad 146 127 107 380
Smile 156 124 111 391
Comf 152 130 111 393
Power 160 130 111 401

BAI Class

Low 442 407 336 1194
High 172 104 104 371

Feeling of Choking

No 513 456 377 1346
Has 101 55 63 219

Difficulty in Breathing

No 460 412 351 1223
Has 154 99 89 342
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Figure 1: Spectrogram representations of (M)ale and (F)emale
samples from the Low-BAI and High-BAI grouping, vocalising
the sad sustained vowel. F0 is plotted for each, showing a
higher mean standard deviation of F0 for samples in High-BAI
grouping as well as for Females compared to Males.

An overview of the mean from results is given in Figure 2a.
When evaluating pitch (F0) of the four classes of sustained
vowels, we see a higher standard deviation between Low-BAI and
High-BAI groupings for all classes, except smiling – particularly,
for sad and comfortable, which show a smaller and medium
effect size, respectively. This finding leads us to assume that
lower aroused phonation types present stronger F0 variance for
those with higher levels of anxiety. For the intensity of the speech
signal, we see that in all cases samples of Low-BAI show strong
deviation in dB, and particularly for sad and powerful which
have a large and medium effect size, respectively. Additionally,
we compare Low-BAI-sad and Low-BAI-power and do see a
large effect size of 1.068 d, reaffirming the effect of the target
vocalisation style for these sustained vowels. We also extract
HNR, and see that like F0, all classes show higher mean results
for the High-BAI class, aside from the smiling vocalisation. This
finding is particularly significant for sad and comfortable and
shows that vocal fold action is less consistent, for these classes
in the High-BAI group. From a qualitative analysis of male and
female speakers, we see that standard deviation in F0 appears to
be larger in female speakers as shown in Figure 1, particularly
for the sustained vowel class of sad. Due to this reason, in future
studies, it would be valuable to explore genders independently.

4. Experimental Settings
We perform a series of experiments to, i) explore the efficacy
of computational prediction of anxiety from speech, and ii) ex-
plore further characteristics of speech which may be affected
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Figure 2: (a) shows the standard deviation for F0 (Hz), Intensity (dB) and HNR (dB) for all classes of sustained vowel, as disucssed in
Section 3. In (b) the effect size between the mean of all features sets (EGEMAPS , DEEP SPECTRUM , and COMPARE for Low-BAI
and High-BAI grouping of each stressed vowel type is shown, and discussed in Section 4.1. Individual results excluded reject the
null-hypothesis. As marked in both (a) and (b) a small (*) effect size (Cohens d) is 0.2, medium (**) 0.4 and large above 0.8 (***).

by anxiety. As mentioned earlier, for evaluation, we create sev-
eral subsets of the data, and we evaluate each grouping through
the correlation of predicted BAI score. Utilising the the four
sustained vowel classes, described previously (sad, smiling, com-
fortable, and powerful), experiments are performed for only
those speech samples, as well as for all together. Firstly we cre-
ate High-BAI and Low-BAI groupings of BAI (≤ 20: Low, ≥ 21:
High), we then then perform these experiments again for groups
of individuals who show (Has) symptoms relating to the BAI
criteria of feeling of choking (choking) and difficulty breathing
(breathing) against those who do not show these systems (No).

4.1. Acoustic features

To cover a range of well-known acoustic features, we extract
hand-crafted speech-based features, as well as a state-of-the-art
approach, extracting spectrogram-based deep data representa-
tions from the speech signals.

OPENSMILE : As a conventional and well established ap-
proach, the 6 373 dimensional COMPARE feature set [22], and
the 88 dimensional EGEMAPS feature set [23], are used given
our experience in similar paralinguistic tasks [24, 25]. From
each instance, the COMPARE and EGEMAPS acoustic features
are extracted with the OPENSMILE toolkit [22]. The default pa-
rameter settings from OPENSMILE are used and due to the short
duration of files (ca. 6 seconds), features are extracted as one fea-
ture vector per sample. We standardise the features by removing
the mean and scaling to the unit variance for COMPARE features
– for EGEMAPS , this was not beneficial.

DEEP SPECTRUM : Additionally, we extract a 4 096 dimen-
sional feature set of deep data-representations using the DEEP
SPECTRUM toolkit [26]1. DEEP SPECTRUM has shown success
for similar audio- and speech-based tasks [18], and extracts fea-
tures from the audio data using pre-trained convolutional neural
networks (CNNs). For this study, we extract Viridis colour map
spectrograms (cf. Figure 1 for colour map), using the default
VGG16 pre-trained network, and as with OPENSMILE , we
extract one feature vector per sample. We also apply standardis-
ation to the DEEP SPECTRUM features.

As a brief initial step, we evaluate the effect size (Cohen’s d)
between High-BAI and Low-BAI groupings of the feature sets ex-
tracted for each sustained vowel (cf. Figure 2b). Of note from this
analysis, we see that DEEP SPECTRUM features appear to have
consistently moderate effect sizes, larger than COMPARE and
EGEMAPS, particularly for the sad and comfortable class. As
this finding also seems to be reflective of our previous acoustic
analysis, where sad and comfortable seem to behave similarly
for F0 STD and HNR STD, this leads us to assume given the
visual nature of DEEP SPECTRUM features that increased stan-
dard deviation in F0 for those with higher anxiety may be more

1https://github.com/DeepSpectrum/DeepSpectrum

easily captured with these features. Further to this, DEEP SPEC-
TRUM most likely observes noise in the signal, as reflected by
the high HNR for both sad and comfortable.

4.2. Training and evaluation

Given that our dataset is reasonably small (ca 3hrs), for a robust
and easily reproducible approach, we choose to utilise an epsilon-
support vector regressor (SVR) with a linear kernel. We split
the data for training, into speaker-independent sets: training, de-
velopment and test (cf. Table 1). During the development phase,
we trained a series of SVR models, optimising the complexity
parameters (C ∈ 10−4, 10−3, 10−2, 10−1, 1), and evaluating
their performance on the development set. We then re-trained
the model with the concatenated train and development set, and
evaluate the performance on the test set. We repeat this method
for each combination. Note that we report the best value for C
in development for test validation.

To evaluate the results of all experiments, we utilise Spear-
man’s correlation coefficient (ρ) due to the ordinal nature of the
raw BAI values. Additionally, we Cohen’s d is used as a mea-
sure of effect size between the predictions of results of interest.
Reporting of Cohen’s d proceeds an evaluation of each test set
prediction result for normality using a Shapiro-Wilktest [27],
as well as two-tailed T-test, rejecting the null hypothesis at a
significance level of p < 0.05.

5. Results and Discussion
Our fully-fledged results are given in Table 2. As indicated by
*, there are significant difference in almost all predictions for
Low-BAI vs High-BAI groupings. As well as this in most cases,
High-BAI grouped results are significantly higher than Low-BAI
grouped results. Although our results do vary, they suggests
that the characteristics of speech, harnesses for prediction of
anxiety, are stronger when anxiety is at high levels. This finding
is supported by earlier discussed literature, which suggests that
speech disturbances and varied speech-rate are prominent in the
speech of those with high anxiety [10]

Looking closer at our BAI grouped experiments, we see
High-BAI grouped anxiety predictions are stronger, with at best,
0.505 ρ for prediction of standardised BAI of all High-BAI
grouped samples. Through the late-fusion of the two best results
EGEMAPS and DEEP SPECTRUM , this is increased to 0.592
ρ. For the individual sustained vowels, smiling in High-BAI
grouping performs best, with EGEMAPS showing up to 0.593
ρ, a result which is also improved by late-fusion up to 0.646 ρ.
We see a slight moderate correlation for DEEP SPECTRUM of
sad High-BAI grouping. However, this is not consistent with all
feature sets. For comfortable and powerful, there are no substan-
tial correlations, leading us to consider that these samples do not
provide meaningful information for the current task.

For the grouping of Has-symptoms, or No-symptoms of
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Table 2: (Dev)elopment and Test SVR results for the prediction of standardised BAI for all stressed vowel combinations selected from
DAC; Reporting Spearmans Correlation Coefficient (ρ) for groupings of; Low-BAI or High-BAI, (Has) Symptoms or (No) Symptoms of
Feeling of (Choke)ing, (Has) Symptoms or (No) Symptoms of Difficulty in (Breath)ing. For High-BAI and Has symptoms groupings ∗
indicates significance (p < 0.05) of test predictions as compared to the equivalent Low-BAI or No symptoms grouping test prediction.
For BAI grouped results, we include late-fusion results taken from the mean of predictions of the two best performing feature sets.
Emphasised results show a positive ρ correlation above 0.3.

ρ Sad Smiling Comfortable Powerful All
BAI Low High Low High Low High Low High Low High

Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test
EGEMAPS -.049 .106 .210 -.057* .043 -.012 .181 .593* -.053 .029 .350 .031* -.098 -.294 .084 .087* .012 -.033 .173 .405*
COMPARE .025 -.018 .100 -.241* .015 -.271 .441 .446* -.101 .183 .154 -.127* .096 .073 .252 .143* .077 .002 .120 .120*
DEEP SPECTRUM .104 .210 .005 .304* .190 .012 .253 .418* .219 .216 .146 -.145* .132 -.004 .146 -.501* .141 .286 .105 .506*
Late-fusion – .194 – .228* – .008 – .646* – .213 – .027* – -.029 – .167 – .238 – .592*

Choke No Has No Has No Has No Has No Has
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

EGEMAPS .102 .190 .611 -.064* .252 .350 .343 .218* .192 .067 .132 -.424 .039 .376 -.148 .317* .146 .222 .103 -.029*
COMPARE .099 -.170 .110 .051* .309 .011 .223 .535* -.008 .294 .081 -.463 .057 .201 .392 .494* .102 -.163 -.148 -.392*
DEEP SPECTRUM .078 .288 .369 -.397* .202 .246 .022 -.160* .130 .300 -.003 .297* .106 .438 .706 .200* .188 .254 .075 .118*

Breath No Has No Has No Has No Has No Has
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

EGEMAPS -.019 .120 .276 -.122* .187 .255 .453 .340 .036 .067 .413 -.217 .081 .234 .218 .194* -.019 .120 .187 .255*
COMPARE .048 -.139 -.028 .363* .282 -.021 .357 .699* .090 .284 .082 .078* .099 .212 .259 -.384* .112 .136 .237 .379*
DEEP SPECTRUM -.006 .357 .301 .284* .342 .256 -.045 .028* .004 .302 -.010 .169* .176 .384 -.009 -.026* .151 .285 .178 .126*

feeling of choking, smiling samples again performs best,
with COMPARE at best 0.535 ρ. However, in this case,
EGEMAPS and DEEP SPECTRUM are less able to capture the
phenomena. Comfortable phonations show a strong negative
correlation for the Has-symptom grouping, a finding which to
a degree also appears for sad, suggesting that intensity may
play a strong roll in this task. When predicting standardised
BAI from all samples with No-symptom of choking, we see that
this is stronger than the Has-symptoms pairing. Overall, there
are no strong findings from this paradigm. However, most No-
symptoms grouped results perform better than Has-symptoms
grouped, which suggest a need for further acoustic analysis, to
observe any variation in the samples for this constellation.

For the grouping of Has-symptoms or No-symptoms of diffi-
culty in breathing, we see that as with choking, the No-symptoms
grouped results are often stronger than Has-symptoms group.
However, across features sets, this is somewhat confused. For
sad, for example, the No-symptoms grouping performs better
with DEEP SPECTRUM , but overall, COMPARE shows slightly
better results for the Has-symptoms grouping. Like all other
groupings, the smiling class in the Has-symptoms grouping
shows our best result with up to 0.699 ρ. COMPARE also per-
forms best when utilising all data for the Has-symptoms grouping.
This is suggesting that HNR, which may be stronger due to re-
stricted airflow, is more easily captured by COMPARE features
for individuals with this breath symptom.

To evaluate further the degree to which highly anxious
speech improves prediction accuracy, we additionally reran our
experiments with all data and without any groupings (cf. Table 3).
From this we find that still the High-BAI grouped with DEEP
SPECTRUM and EGEMAPS results are stronger, with the best re-
sults from late-fusion being .243 ρ for all data (a result which can
be considered negligible). This result is significantly lower than
the best HIGH-BAI result with all sustained vowels, reporting a
very large effect size of 1.718 d.

In general, for all scenarios, the smiling class performs best
for the stronger High-BAI/Has-symptoms groupings. This find-
ing could suggest that anxiety is more prevalent in a more fa-
cially strained stressed vowel. There is much in the literature
relating to smiling and anxiety, for example, the “fooled by a
smile” effect in which those who suffer from anxiety can show
untrue emotional expressions [28]. Furthermore, high anxiety

Table 3: SVR results for prediction of standardised BAI from all
data combined, without groupings. Late-fusion of two best.

Dev Test
EGEMAPS .189 .245
COMPARE .093 .213
DEEP SPECTRUM .106 .238
Late-fusion – .243

involves much more facial expression, and general movement, as
compared to lower anxiety, with ‘non-enjoyment’ smiles being
displayed frequently [29].

6. Conclusion and Future Outlook
In this study, we explored the effect of anxiety on speech. In
particular, we evaluated the efficacy of predicting anxiety from
adult speech for the first time and evaluated non-lexical sus-
tained vowels as a first step. Our findings show that utilising
speech-based features for prediction of anxiety is valid and that
recognition of higher levels of anxiety is better. As individuals
reporting high levels of BAI may need a more timely medical
intervention this finding is promising. From our results, we see
that smiling phonations are particularly informative for those
with high anxiety. A finding related to literature which states that
smiling causes an alteration of the vocal tract and can be “heard
as well as seen” [30]. Additionally, those with high anxiety often
overstate their emotional expression [28], possibly leading to
stronger speech variance. For further studies, we hope to ex-
plore the effect of smiling phonations (and facial movement) on
anxious speech further. As well as this, given the slight gender
bias to our data, it would be of interest to evaluate gender in-
dependently, as we have seen that features such as STD for F0
are stronger in highly anxious female samples. Further, since
our study shows promise for the presence of anxiety in speech
without lexical content, it would be of interest to compare this to
free speech samples.
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