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Abstract
Different language modeling approaches are evaluated on
two under-resourced, agglutinative, South African languages;
Sesotho and isiZulu. The two languages present different chal-
lenges to language modeling based on their respective orthogra-
phies; isiZulu is conjunctively written whereas Sotho is disjunc-
tively written. Two subword modeling approaches are evaluated
and shown to be useful to reduce the OOV rate for isiZulu, and
for Sesotho, a multi-word approach is evaluated for improving
ASR accuracy, with limited success. RNNs are also evaluated
and shown to slightly improve ASR accuracy, despite relatively
small text corpora.
Index Terms: speech recognition, kaldi, subword modeling,
multi-word modeling, lattice rescoring, RNNLM

1. Introduction
Speech analytics is one of the most successful commercial ap-
plications of Automatic Speech Recognition (ASR). However,
the uptake of speech analytics has largely been restricted to
developed-world markets by the fact that available commer-
cial systems cater for well-resourced languages, as opposed to
under-resourced languages which dominate the linguistic land-
scape of less developed markets. This denies both compa-
nies, agents and customers in developing market call-centers the
clear benefits of speech analytics. Where developing markets
have attempted to adopt international speech analytics products
in an effort to ensure, for example, legal compliance, it has be-
come clear that this is a double-edged sword: on the one hand,
agents are more consistently communicating important legal
and regulatory information to customers than they would have
been inclined to do so otherwise. On the other hand, they switch
over to a well-resourced language such, as English, as they are
monitored by a speech analytics system in the well-resourced
language. This pattern forces customers to receive and interpret
important information in a language for which they often lack
the necessary level of comprehension.

The obvious answer to this dilemma is to develop speech
analytics in the languages customers prefer, which in turn re-
quires accurate ASR in that language. However, the finan-
cial cost of creating the necessary resources is often prohibitive
[1]. Moreover, porting speech technology to an under-resourced
language poses challenges beyond that of resource acquisition.
It often requires innovative and adaptive language and acous-
tic modeling techniques to address challenging socio-linguistic
characteristics of under-resourced languages [1].

One such adaptation is the use of alternative language mod-
eling units, such as subword units, in place of traditional word-
based language modeling. This offers a different language
modeling approach to be taken in the case of morphologi-
cally complex languages. This paper investigates whether any
gains can be made through the use of subword and multi-word
units, both within an n-gram language model and a Recurrent

Neural Network (RNN) model, when applied to isiZulu and
Sesotho. These are two under-resourced languages spoken in
South Africa, for which traditional language modeling tech-
niques are less effective due to their agglutinative nature.

The paper is structured as follows. Section 2 provides back-
ground information on speech analytics and under-resourced
languages. Sections 3, 4 and 5 present an overview of the lan-
guage modeling approaches under evaluation. The experimen-
tal setup and results follow in Section 6. The paper concludes
with a discussion and summary of findings in Sections 7 and 8.

2. Background
2.1. Speech Analytics in Contact Centres

Speech analytics is the extraction and analysis of information
from speech data, with the purpose of providing insight, ranging
from speech content to speaker sentiment [2]. It has emerged as
a powerful tool for customer contact centres to leverage the vast
unstructured speech data at their disposal. While other com-
munication media, such as chat bots, are becoming increasingly
popular, contact centres are still the main source of contact for
many customers, and a primary channel for delivering services.
To maintain a competitive edge in customer service, companies
are looking to reduce costs while simultaneously improving the
quality of customer interaction [2].

Speech analytics tools cater for these needs by improving
operational efficiency, agent monitoring, evaluation, risk miti-
gation, amongst others. Moreover, it provides the qualitative
insights needed to improve and ensure the quality of customer
service. However, the performance of speech analytics tools is
highly dependent on the underlying ASR technology accuracy,
which remains a challenge for under-resourced languages.

2.2. isiZulu and Sesotho

isiZulu and Sesotho are two of South Africa’s eleven official
languages, and are representative of the two primary branches
of Bantu languages in South Africa; the Nguni branch and the
Sotho–Tswana branch. Languages within each group are, for
the most part, mutually intelligible for native speakers. This
makes isiZulu and Sesotho important languages for speech ana-
lytics within call-centres, as call-centre agents are driven to ne-
gotiate the communicative interaction between themselves and
a broad base of linguistically diverse customers.

isiZulu is the most widely spoken first language in South
Africa, with a speaker population size equivalent to that of Fin-
ish and Danish combined, while Sesotho is comparative to that
of Norwegian. Despite speaker population size, they are both
considered under-resourced languages. This is not unusual for
Non-European languages, even widely spoken ones, which tend
to be less well-studied, and thus resourced, than their European
counterparts.

Both isiZulu and Sesotho are agglutinative languages, with
a highly productive morphological strategy of augmenting word
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stems with affixes [3]. They are characterised by an expansive
vocabulary [4], similar to the more well-known agglutinative
languages Finnish, Turkish and Hungarian. The crucial distinc-
tion between isiZulu and Sesotho, from a language modeling
perspective, is that orthographically, isiZulu is written conjunc-
tively whereby affixal morphemes are joined to the word stem
when written. In contrast, Sesotho is disjunctive, allowing for
affixes to be written separately from word stems [5].

2.3. Word-Level N-Gram Modeling

Agglutinative languages are well-known for challenging tradi-
tional word-level n-gram language modeling, primarily due to
a high number of out-of-vocabulary words (OOVs) and large
lexicons. N-gram language models using word units are often
chosen for being an effective, count-based, statistical approach
which can achieve a high level of accuracy with limited param-
eter requirements. However, these models perform poorly at
modeling previously unseen words [6]. This problem is exac-
erbated for under-resourced languages which lack access to the
large training corpora generally required to produce accurate
and statistically relevant models [6, 7].

For isiZulu, the characteristically large vocabulary is asso-
ciated with data sparseness, resulting in poor n-gram parameter
estimations and high OOV rates, directly influencing word er-
ror rate (WER) [8]. Sesotho unintentionally benefits from its
disjunctive orthographic system which reduces the incidence of
OOVs and produces a smaller vocabulary. However, it does in-
crease the frequency of mono- and bimorphemic words which
also leads to poor n-gram parameter estimation. This is a re-
sult of the limited contextual information available in each n-
gram. Furthermore, in the case of isiZulu and Sesotho as under-
resourced languages, the paucity of resources discourages data
selectivity which lends itself to the inclusion of sub-optimal or
noisy training data. Using alternative language modeling units
potentially addresses these challenges.

3. Subword Language Modeling
Subword modeling is a common approach used to reduce OOVs
and address the data sparsity associated with very large vocab-
ularies. Subword units are obtained by splitting words into
smaller parts. Depending on the segmentation method, subword
units may be linguistic units such as phonemes, morphemes or
syllables, or a morpheme-like unit if a data-driven approach is
used [9]. The use of subword units reduces vocabulary size,
while still allowing for the recognition of larger units through
unit concatenation. This significantly reduces model complex-
ity, improving the model’s efficiency [10]. The concatenation
of subword units also enables the model to create an extensive
vocabulary, thus reducing the number of OOVs. [10] claim an
absolute WER reduction of over 5% by using subword model-
ing, comparative to other publications on the same datasets.

3.1. Segmentation methods

Two data-driven segmentation methods are compared; Morfes-
sor [11] and a consonant-vowel based syllable approach [12].

a. Morfessor is a tool used for morphological segmenta-
tion that uses an unsupervised algorithm based on Minimum
Description Length principle. The goal is to find language units
which resemble the surface forms of morphemes [10]. Mor-
fessor has been a popular method for segmenting agglutinative
languages such as Finnish and Estonian, for ASR [10].

b. Syllable based approach employs an algorithm that cre-

ates syllables by splitting words at consonant clusters. “Valid”
consonant clusters are learned by observing consonant clusters
at the beginning and end of words in the training vocabulary.
Where a consonant cluster consists of more than one consonant
C1C2, the cluster is split at that point where C2 is as big as pos-
sible and valid, while C1 is also valid. If no such split exists,
the cluster is split to maximize the length of C2 while still valid,
otherwise the split is applied before the cluster.

3.2. Boundary markers

Recognizing OOV’s using subword approaches requires the
ability to reconstruct words from the subword units. One such
approach entails adding word boundary tags to subwords to in-
dicate where it was split from a word [10]. A marker is ap-
plied on either side of the subword unit if the subword occurred
in-between other subwords. For example, “two slippers”, split
into the subwords [two, slipp, er, s] would be rewritten as “two
slipp+ +er+ +s”. To reconstruct words from these boundary
marked subwords, all +[space]+ sequences in the one-best path
are deleted, resulting in “words”.

To ensure that only valid subword sequences are recog-
nized, [10] creates a special subword L-FST, where position
dependent phones are applied to subword units as they would
have been in the original word; in other words, the subword
“slipp+”’s pronunciation would be /s B l I @ I p I/ instead of
/s B l I @ I p E/ (the final phone is still a word-internal phone,
and not a word-end phone). The corresponding L-FST thus en-
sures that only valid sequences of subwords which can all join
together to form words, are recognized during decoding.

In order to find the corresponding phonetic pronunciations
for these subword units, the word pronunciation dictionary was
G2P-aligned, and the corresponding pronunciations extracted.

4. Multiword Language Modeling
Due to the disjunctive orthography used by Sesotho, many of
the lexical units are mono- or bimorphemic. As such, language
modeling for Sesotho faces the same challenges as using mor-
phemic language modeling units. In ASR, short lexical units are
more frequently misrecognised than longer words [13]. Acous-
tically, they are more readily confused and in terms of n-gram
language modeling, the span of the language model is short-
ened, reducing context. A solution to reduce the confusion
caused by short morphemes is to merge these morphemes with
neighbouring lexical units to create longer, compounded lexical
units [13]. This approach has been shown to improve ASR per-
formance in various tasks [14, 15, 16], although [13] found that
a word-based model still outperformed their morpheme- based
models with concatenation.

4.1. Lexical Sequence Selection

Different measures have been proposed in literature for selec-
tion of the lexical units to merge. Based on a comparison with
the use of mutual information (MI) as a measurement, whereby
pairs are chosen to maximise the MI, [9] suggest selecting pairs
based on the product of their direct and reverse bigram proba-
bility. [9] achieved the best results by concatenating pairs with a
probability and frequency count greater than a set threshold. A
similar approach was used by [17] who based their selection on
the geometric average of the direct and reverse bigrams. Oth-
ers [13] have used the frequency of the lexical sequences in the
training data, selecting sequences above an optimal frequency
threshold. Lexical unit size (as determined by character, conso-
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nant or syllable count) under a set threshold has also been used
as a selection criterion [18]. In this paper, bigram frequency and
lexical unit size were used as the main selection criteria.

Multi-word tokens were created by concatenating the final
selected bigrams and adding an identifying tag to the concate-
nated bigrams. The identifier aids the recovery of the original
word sequence during post-processing. The new multi-word
tokens are added to the vocabulary and used to replace their re-
spective bigram sequences in the training text. The multi-word
tokens are also added to the dictionary and assigned the com-
bined pronunciation of the underlying words.

4.2. Phone Modeling Adaptations

The changes in word boundaries caused by word concatenation
need to be adjusted for in the L-FST, because of the position
dependent phone approach in Kaldi, described in Section 3.2.
To ensure multi-word pronunciations are modeled correctly, the
lexicon is re-generated with the multi-word phone-dependent
sequences which reflect the phone positions as they are in the
original words. Silence modeling is also affected by changes to
the word boundaries. Kaldi permits optional silences on word
boundaries, but not within words [10]. To preserve the phonetic
modeling of the original words which make up each concatena-
tion, optional silences are added for the multi-words where the
original word boundaries lie in the L-FST.

5. RNN Language Model
RNNs, and more recently BERT [19], have improved the state-
of-the-art in NLP significantly. In neural language models
words are modeled in a continuous vector space, in which the
spatial proximity of words automatically correlates with seman-
tic similarity. This allows the model to infer word relationships
beyond those present in training data [20]. This gives these LMs
the ability to better generalise than traditional n-grams, leading
to state-of-the-art results on many challenging NLP tasks [21].

RNNs, in particular, have been used for some time to train
LMs, and are typically applied by rescoring lattices. While
RNNs typically require large amounts of data, we were inter-
ested in evaluating the potential benefit of RNNs when using
subword-like features [22] for morphologically complex under-
resourced languages. This is achieved by representing each
word w as a bag of character n-grams, where special boundary
symbols < and > are added at the word boundaries to distin-
guish prefixes and suffixes from other character sequences. For
example, for the word “hello” the character n-gram are: <he,
hel, ell, llo, lo>, and the special sequence <hello> [22].

6. Experiments and Results
A common problem in under-resourced domains is having in-
sufficient amounts of text for language modeling. For this rea-
son, we report results for two scenarios: ideally having some in-
domain text for training LMs, versus having only out-of-domain
text such as government documents available.

6.1. Datasets

The two corpora used for training language models and evalu-
ation of the subsequent ASR systems are summarized in Table
1. All text was text normalised by removing punctuation, low-
ercasing, and converting digits to spoken numbers. The OOV
rates shown in Table 1 are significantly higher than one would
see for non-agglutinative languages. An OOV rate of 1-2% has

been reported for a 64K-word English vocab based on the Wall
Street Journal corpus, and 3-4% for the same size Spanish vo-
cab drawn from the Spanish Broadcast News corpus [23]. The
difference in OOV rate between isiZulu and Sesotho reinforce
the key role their written systems play in language modeling.
The global increase in OOV rate for the out-of-domain test data
is expected given the dissimilarity to the training data which
represents a highly specific domain.

6.1.1. SASAL Corpus

The SASAL Corpus is an in-house speech and text corpus col-
lected as part of the Speech Analytics for South African Lan-
guages (SASAL) project being run by Saigen (Pty) Ltd, with
support from the South African Department of Sports, Arts
and Culture (DSAC). The corpus mainly consists of narrow-
band conversational speech in Afrikaans, Sesotho and isiZulu,
sourced from call-centre audio. The Afrikaans and Sesotho data
includes supplementary speech from broadcast news approxi-
mate to the speech style of the call-centre audio. Subsets of the
Sesotho and isiZulu transcriptions were used as training text for
the respective language models.

6.1.2. NCHLT CTexT Corpora

The second set of language modeling training text was the Na-
tional Centre for Human Language Technology and Centre for
Text Technology (NCHLT CTexT) isiZulu and Sesotho text cor-
pora [24]1. This is text sourced from South African government
documents produced by various language units and crawled
from gov.za websites.

Table 1: Training text corpora vocabulary size, number of
words and % of words in the evaluation text that are OOV.

Corpus Subset Vocab # Words %OOV

SASAL isiZulu 106 629 1 179 964 38,04
Sesotho 16 655 472 239 19,38

NCHLT CTexT isiZulu 234 567 2 256 091 50,48
Sesotho 37 070 1 846 259 34,63

6.2. Speech Recognition System

The ASR systems were built using Kaldi [25]. For the acoustic
models, speaker-dependent Gaussian Mixture model triphone
models were trained in order to generate phone alignments.
These alignments were then used to train Factored Time Delay
Neural Network acoustic models [26]. The Sesotho acoustic
models were trained on 55 hours of the SASAL speech corpus,
while the isiZulu model was trained on the 55 hour SASAL as
well as and additional 250 hour in-house corpus. A combina-
tion of proprietary pronunciation dictionaries and the NCHLT
Sesotho and isiZulu dictionaries provided the pronunciations
for the lexicon. For words not in the dictionaries, a joint-
sequence model was used to performed language identification
and the pronunciations were then generated by a grapheme-to-
phoneme model. The ASR systems were evaluated on a 5-hour
held-out set from the SASAL corpora, for each language.

6.3. Baseline N-gram Models.

Two 3-gram isiZulu and two 5-gram Sesotho word-level base-
line language models (henceforth WB) were trained, one on
each corpus. As expected, both the Sesotho and isiZulu ASR

1 Additional language resources: https://repo.sadilar.org/
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system using the NCHLT CTexT language model have a higher
WER than the systems using SASAL training text. This is a
result of the domain dissimilarity between the NCHLT training
text and the SASAL evaluation set. The results of all the isiZulu
ASR models are given in Table 3 and the results for the Sotho
models are given in Table 4.

6.4. Subword N-gram Models

Four subword 3-gram models were trained in total; two using
morfessor to create the subword units (henceforth SWM), and
the other two using the novel syllable based algorithm (hence-
forth SWS) described in Section 3.1.1. For each segmentation
approach, a model was trained on the SASAL corpus and a
model was trained on the NCHLT corpus.

6.4.1. Morfessor vs. Syllable Segmentation

The syllable algorithm generated more subword units on both
text corpora, than Morfessor. When trained on the SASAL cor-
pus, the SWS model performed marginally (0.1-0.2%) better
than both the word-level model and the SWM model at 54.7%.
However, amongst the NHCLT CTexT trained models, the WB
model achieved the best WER of 68.5%. Although, SWS model
still performed better than the SWM model.

Table 2: Number of subword units by segmentation method.

Segmentation Corpus # Subword Units

Morfessor NCHLT 2 093
SASAL 2 166

Syllable NCHLT 4 297
SASAL 4 336

6.5. Multiword N-Gram Models

Two multi-word 5-gram models were trained; one on each cor-
pus. Using bigram counts based on the training data, the 40
most frequent Sesotho bigrams, composed of words 5 charac-
ters or less, were selected for concatenation if the multi-word
unit produced by the concatenation did not already exist as a un-
igram in the data. Similar to [13] the multi-word models did not
improve upon the WB results, except for a small win (0.02%)
on the SASAL corpus comparing the WB and MW RNNLMs.

Table 3: WERs for isiZulu using different LM approaches.
Word baseline (WB), RNNLM and RNNLM with character n-
grams (RNN Char) results are shown, and subword modeling
approaches using syllables (SWS) and Morfessor (SWM). % R-
OOV refers to the percentage of OOVs recognized correctly.

SASAL NCHLT
Method WER % R-OOVs WER % R-OOVs
WB 54.9 - 68.5 -
WB RNN 54.2 - 67.6 -
WB RNN Char. 54.2 - 67.5 -
SWS 54.7 19.74 68.9 18.58
SWS RNN 53.6 19.10 68.3 14.69
SWM 54.8 22.98 69.1 17.41
SWM RNN 53.9 22.47 68.6 16.76

6.6. RNN Language Models

The RNNLMs were trained for 30 epochs with an embedding
size of 200 and regularization parameter of 0.005. For isiZulu,
adding subword units increases the RNNLM’s gain from 0.7%

to 1.1% on the SASAL corpus. On the SASAL data, the addi-
tion of n-gram character modeling to the RNNLM architecture
improves performance for both languages. Conversely, on the
Sesotho NCHLT corpus, the RNNLM performance sees a sig-
nificant deterioration with an increase of 1.61%.

Table 4: WERs for Sotho using different LM approaches. The
word baseline results (WB) are shown in comparison to the
results with RNNs, with and without character ngrams (RNN
Char), and the Multiword (MW) modeling approach.

Method SASAL NCHLT
WB 33.91 48.69
WB RNN 33.02 49.95
WB RNN Char. 33.01 51.56
MW 34.09 48.92
MW RNN 32.98 50.22

7. Discussion
Both isiZulu subword modeling approaches were useful in
recognising OOVs. However, no statistically significant im-
provement in WER was observed, which is similar to what was
observed for Latvian [8], but contrary to results obtained for
Turkish [27]. While a significant part of the Latvian corpus
also contained spontaneous speech from different sources, the
Turkish corpus consisted of Broadcast News audio, which is
typically an easier ASR task, as the speech is typically better
enunciated. We have also seen some evidence of words with
significant vowel reduction in isiZulu being recognized “as pro-
nounced” by the subword system, ie, with missing syllables.
This is currently considered an error by our scoring system, but
could partly explain why we do not see WER improvements.

A minimal gain was observed in Table 3 and 4 on the
SASAL data when rescoring word-lattices with RNNs, even
though the LM corpora were relatively small compared to what
is typically used to train these models. Further gains were ob-
served on the in-domain LM experiments when rescoring the
subword lattices with subword RNNLMs. For Sotho, gains
where made when rescoring the word lattices with RNNLMs
trained on the in-domain corpora, however performance deteri-
orated significantly when rescoring with RNNLMs trained on
the out-of-domain corpora. It can be noted that the WERs re-
main high, particularly for isiZulu given the additional 250 hour
in-house training corpus. Additionally, the RNN gains were
smaller than anticipated. This could be attributed to noisy data
which includes a large degree of code-switching - a key char-
acteristic of South African call-centre speech. These matters
should be investigated in future work.

8. Conclusion
In this paper, we investigated different language modeling ap-
proaches to improve the WER and OOV rate of two aggluti-
native South African under-resourced languages. The use of
subword modeling was shown to significantly reduce the OOV
rate in isiZulu, which is orthographically conjunctive, while
multi-word modeling was not useful to significantly reduce the
WER for the disjunctively written Sesotho, especially for out-
of-domain LMs. RNNLMs were found to slightly reduce WER,
even when trained on small amounts of in-domain data.
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