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Abstract

Traditional hybrid speech recognition systems use a fixed vo-
cabulary for recognition, which is a challenge for agglutinative
and compounding languages due to the presence of large num-
ber of rare words. This causes high out-of-vocabulary rate and
leads to poor probability estimates for rare words. It is also im-
portant to keep the vocabulary size in check for a low-latency
WEST-based speech recognition system. Previous works have
addressed this problem by utilizing subword units in the lan-
guage model training and merging them back to reconstruct
words in the post-processing step. In this paper, we extend
such open vocabulary approaches by focusing on compound-
ing aspect. We present a data-driven unsupervised method to
identify compound words in the vocabulary and learn rules to
segment them. We show that compound modeling can achieve
3% to 8% relative reduction in word error rate and up to 9%
reduction in the vocabulary size compared to word-based mod-
els. We also show the importance of consistency between the
lexicon employed during decoding and acoustic model training
for subword-based systems.

Index Terms: Speech Recognition, Subword Modeling, Com-
pounding, German

1. Introduction

Large-vocabulary continuous speech recognition (LVCSR) of
languages with productive word formation poses a challenge
because of high number of word forms. For example, the vocab-
ulary size shoots up enormously in German due to word com-
pounding. Typically, these words are entity names or content
words. For a low-latency and low-compute automatic speech
recognition (ASR) system, it is important to control the size of
vocabulary. One approach to address this problem is to use sub-
word units as the modeling unit [1, 2, 3]. Recently, end-to-end
ASR systems [4, 5] have been proposed which also typically use
subword units. However, they also struggle to recognize proper
nouns due to the lack of enough text data seen by the model
[6, 7]. The subword-based systems segment words into smaller
units, called subwords, and add some kind of markers to these
subwords for the identification of word boundaries. The lan-
guage model is trained on a mix of word and subword tokens.
After the recognition is done, the markers are removed in the
post-processing step to reconstruct the original words. Previous
works have experimented with different data-driven segmenta-
tion approaches like Morfessor [8, 9], Greedy Unigram Seg-
mentation [10] or Byte-Pair-Encoding [11]. One challenge with
the subword-based system is to get the correct pronunciations of
subword units. In [2], experiments were done with Finnish and
Estonian languages for which there is a one-to-one mapping be-
tween graphemes and phonemes. Other approaches make use of
grapheme-to-phoneme (G2P) models. However, as these data-
driven segmentation approaches can potentially produce unpro-
nounceable tokens, G2P is likely to produce incorrect pronun-
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ciations. Further, the G2P systems are typically trained on man-
ually curated pronunciations of regular words. There exists few
syllable-based segmentation approaches [12] which can avoid
this problem, however, they need to be trained separately for
each language. In [1, 3] subword units were derived by align-
ing the graphemes and phonemes of pronunciations of regular
words. In this work, we focus on the compounding aspect. We
propose a data-driven unsupervised method to identify and seg-
ment compound words. As we split compounds such that the
segmented tokens are part of the vocabulary, we can use the
manually curated lexicon for pronunciation of segmented to-
kens. We show that by splitting compounds prior to ASR train-
ing and joining them back after recognition helps in achieving 3
to 8% relative word error rate reduction (WERR) and results in
9% reduction of vocabulary size for German language. We also
show that having consistency between lexicon employed dur-
ing acoustic model training and ASR decoding can have large
impact on the accuracy of subword-based ASR systems.

geldkasse

kindergeldkasse

Figure 1: The figure on the left is a prefix-tree constructed from
full vocab comprising of {kinder, kindergeld, kindergarten,
kindergeldkasse}. The figure on the right is a prefix-tree con-
structed from segments_vocab consisting of {kinder, garten,
geldkasse}.

2. Compound Modeling
2.1. Segmentation

We use a data-driven approach to identify and segment com-
pounds in the vocabulary. We consider all possible segmenta-
tion of a compound such that the segmented tokens (also re-
ferred as decompounds) are part of the vocabulary. However,
the vocabulary of LVCSR task tends to contain spelling errors
or multi-lingual words in its tail which may result into incor-
rect splitting of a compound. For example, it is not uncommon
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Algorithm 1 merge(leftTree, rightTree)

Initialize merged < PrefizTree()
for leftSubtree in leftTree.children() do
label < leftSubtree.label
if rightTree contains label then
rightSubtree <— rightTree[label]
else
rightSubtree <— PrefixTree()
end if
merged[label] <— merge(leftSubtree, rightSubtree)
end for
merged.word = [leftTree.word, rightTree.word]
Return merged

to have the English word no in the German vocabulary which
would result into incorrect segmentation of German compound
nomaden — no maden. To address this, we restrict the seg-
mented tokens to a smaller vocabulary consisting of frequently
occurring words. We refer to this vocabulary as segments_vocab
and the full vocabulary considered for identifying compounds
as full vocab. We first construct a prefix tree for words in
full_vocab and segments_vocab independently as shown in Fig-
ure 1. We then merge the two trees as per the procedure de-
scribed in Algorithm 1. The merged tree consists of all the paths
in the full_vocab tree but word labels from both the trees, as
shown in Figure 2. Eventually, segment procedure from Algo-
rithm 2 is called. To address over-generation, some restrictions
can be placed. For example, in order to avoid splitting like er-
leben — er leben, we only keep those words in segments_vocab
which consists of more characters than a certain value. One can
also chose to limit the maximum number of segments of a com-
pound. In Section 2.3, we describe a method to further filter
these segmentation rules based on lexicon.

2.2. Deterministic Splitting

The approach described in Section 2.1 can produce multi-
ple segmentations of a compound. For example, two pos-
sible segmentation of schlafzimmerlicht is possible with a
segments_vocab consisting of {schlaf, zimmer, schlafzimmer,
licht}:

schlaf zimmer licht
schlafzimmer licht

schlafzimmerlicht
schlafzimmerlicht

—
—

One approach could be to split compounds with all possible
segmentations [13]. On the other hand, for a n-gram based lan-
guage model, this would mean distributing the counts among
different segmentation forms. In order to have a determinis-
tic splitting, we select the splitting form with the least number
of segments. If there are still multiple options, we select the
splitting form with the maximum sum of counts of its segments
where the counts are calculated over all the learned segmenta-
tion rules.

2.3. Filtering Segmentation Rules based on Pronunciations

We earlier discussed in Section 1 how previously proposed sub-
word modeling approaches fail to get correct pronunciations for
subword units. When working with lexicon-based ASR sys-
tem, this can have a significant impact on the accuracy. When
we segment a compound, the concatenation of pronunciations
of decompounds must result into the pronunciation of the com-
pound. This can also be used to identify incorrect segmentation
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(kindergeld,
null

(kindergarten, null)
kindergeldkasse, null;

Figure 2: The tree on the left is the output of merging the two
trees of Figure 1. The tree on the right is the output of merging
the subtree of node with the word label {kinder, kinder} in the
left tree with the segments_vocab tree of Figure 1.

Table 1: Different marking styles used in subword modeling.

Marking Style | Example

schlaf +zimmer +licht
schlaf+ zimmer+ licht
schlaf+ +zimmer+ +licht
<w> schlaf zimmer licht <w>

Left-marked (+m)
Right-marked (m+)
Both-marked (+m+)
Word Boundary (<w>)

rules. We discard all such segmentation rules where not all the
pronunciations of a compound can be constructed by concate-
nating pronunciations of its decompounds.

2.4. Marking Styles

In order to be able to combine subword units in the post-
processing step quickly and deterministically, usually some
kind of markers are used. Table 1 shows four different kinds
of marking styles typically used. Three of them add markers
to the subword tokens whereas word boundary marking style
(<w>) introduces an additional token per word. As it intro-
duces an extra token per word, it requires a higher n-gram order
for language modeling. m+ and +m marking styles are differ-
ent than +m+ style as they split a word into marked as well as
unmarked tokens. As all the rest of the vocabulary is also un-
marked, these marking styles can theoretically construct more
new words than +m+ marking style. There is no conclusive ev-
idence in previous works about which marking style performs
better. [2] reports that +m+ marking style attains the best per-
formance on ASR task on Finnish and Estonian languages. In
[14], left-marked style (+m) was compared against word bound-
ary style (<w>) and it was shown that +m style outperforms
<w> style for Hungarian ASR. In [15], experiments were done
with all the four marking style and was shown that m+ style per-
forms best for ASR with large vocabularies while <w> works
best on smaller vocabularies.



Algorithm 2 segment(mergedTree, segmentsTree, segmentNum=0)

Initialize segmentationList <— []

Initialize subtrees < {subtree | subtree € mergedTree and subtree.root.word[1] != null}

for subtree in subtrees do
if segmentNum > 0 and subtree.word[0] != null then
segmentationList. Add([subtree.word[1]])
end if
if isNotLea f(subtree) then
mergedTree <— merge(subtree, segmentsTree)

for segments in segment(mergedTree, segmentsTree, segmentNum+1) do

segmentationList. Add([[subtree.root.word[1]] + segments])

end for
end if
end for
Return segmentationList

Table 2: Handling of position-dependent phonemes for com-
pound modeling. For illustration purpose, graphemes of the
words are used as its pronunciation.

Marking Token Pronunciation
Style
. . sBchlafzimmer)
- schlafzimmerlicht lichtE
schlaf+ sBchlaf
+m+ +zimmer+ zimmer
+licht lichtE
sBchlaf
schlaf+ schlaf
m+ . zimmer
zimmer+ .
zBimmer
licht IBichtE

2.5. Lexicon

In a hybrid WFST-based speech recognition system [16], the
search graph is constructed by composing four FSTs: H which
maps states of the Hidden Markov Model to context-dependent
phonemes, C' which transduces context-dependent phonemes to
context-independent phonemes, L which transduces phoneme
sequence to words, and GG which is constructed from the lan-
guage model (LM). The output symbols of L, which is the set of
words in the lexicon, should match input symbols of GG, which
is vocabulary of the language model. Apart from decoding lex-
icon, there is another lexicon which is used during acoustic
model (AM) training to generate forced-alignments.

Modeling pronunciations for subword-based systems which
use position-dependent phonemes is not straight-forward. For
example, in Kaldi system [17], there are four variants of a
phoneme depending on whether it occurs in the beginning, mid-
dle, end of the pronunciation or is a single-phoneme pronuncia-
tion. Suffixes _B and _E are added to the first and last phoneme
of a pronunciation, respectively. If we treat the subwords as reg-
ular words, we would end up modifying the position-dependent
phonemes in the pronunciation of the original word. This also
makes pronunciation of marked and unmarked tokens with the
same root indistinguishable. In [2], this problem was addressed
by modifying the lexicon FST to have separate paths for sub-
word and regular word tokens. As mentioned in Section 2.4, +m
and m+ marking styles are more capable of recognizing out-of-
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Table 3: Comparison of relative reduction in the vocabulary
size against the size of segmentation rules relative to the initial
vocabulary size.

. . Relative Reduction in
Relative Size of Vocabulary Size (%)
Segmentation Rules (%)
+m [ m+ |  +m+
4e—3 3e—3 2e—4 —be—4
1.11 0.85 0.72 0.47
2.26 1.71 1.58 1.15
5.69 4.09 4.01 3.23
7.84 5.35 5.28 4.38
14.23 8.57 8.56 7.36

vocabulary (OOV) words but the restrictive lexicon FST of [2]
can limit this potential greatly. In this work, we keep the origi-
nal structure of the L FST and address the problem by handling
position-dependent phonemes as per Table 2. For +m+ style,
suffixes are added to the boundary phonemes of pronunciation
of marked tokens depending on whether the marker is on the
left or right or both side of the token. For m+ and +m styles, we
add two pronunciations for the marked tokens as they can ap-
pear in the start or middle of a word in case of m+ style and in
the middle or end of a word in case of +m. The pronunciations
for unmarked tokens are handled similar to any regular word.

3. Experiments
3.1. Setup

All the experiments were done for German language. The LM
training data comprising of various internal and external text
data sources, was used to learn compound segmentation rules.
All the n-gram language models are 4-gram models and the hy-
pothesis generated by the first-pass ASR system is rescored by
a Neural Language Model (NLM). The training data for rescor-
ing NLM is consistent with the first-pass n-gram LM in all the
experiments. We experimented with three marking styles: left-
marked (+m), right-marked (m+) and both-marked (+m+). We
left out word boundary style (<w>) as it requires higher n-gram
order compared to the rest of marking styles in order to have a
fair comparison. We measure the accuracy of ASR systems in
terms of word error rate (WER). We report relative word error
rate reduction with respect to baseline word-based model. Two



Table 4: Comparison of effective OOV rate on the vocabulary of
Knowledge test set against the size of segmentation rules rela-
tive to the initial vocabulary size. The OOV rate of word-based
model is 4.20%.

Relative Size of \ Effective OOV rate (%)

Segmentation Rules (%) | +m [ m+ |  +m+
2.26 2.62 2.39 3.69
5.69 2.45 2.24 3.52
7.84 2.33 2.12 3.40
14.23 2.10 2.01 3.20

Table 5: Accuracy results of different compound ASR systems
compared to word-based system. The AM remains same in all
the systems. As it is trained on token-type of word-based model,
the decoding lexicon for compound systems is inconsistent with
the AM training lexicon.

Marking Generic Knowledge
Style WERR (%) | WERR (%)
Left-marked (+m) 1.1 3.2
Right-marked (m+) 1.4 3.7
Both-marked (+m+) 0.9 1.8

internal test sets were used, one is Generic speech recognition
task and the other is Knowledge test set consisting of queries
with the intent of seeking information about entities.

3.2. Vocabulary Size

Table 3 shows the behaviour of reduction in vocabulary size
compared to the size of learned segmentation rules. As +m+
marking style introduces markers to all segments, the vocabu-
lary size reduction is smaller compared to m+ and +m mark-
ing styles. In fact, it may result into vocabulary increase when
working with a small vocabulary and only a handful of seg-
mentation rules are learned. +m style results into slightly more
reduction in vocabulary size compared to m+ style. This can
be attributed to the fact that there is a higher degree of varia-
tion in prefixes than suffixes of compound words in German.
In Table 4, we compare the OOV rate of the compound mod-
els on the vocabulary of Knowledge test set. As the compound
models can potentially recognize words beyond its vocabulary,
we calculate the effective OOV (EOOV) rate. We consider only
such words as OOV which can’t be constructed by the vocabu-
lary of compound models. Consistent with the expectation that
m+ and +m marking styles are more capable to construct new
words, we see lower EOOV rate compared to +m+ style. m+
style has marginally lower EOOV rate than +m style.

3.3. ASR Results

Table 5 compares the WERR observed when using compound
language models with different marking styles over word-based
model. The acoustic model remains same for all the systems
and is trained on token-type of word-based system. For com-
pound ASR systems, there is a mismatch between the decoding
lexicon and the lexicon used in AM training. In the decoding
lexicon, the position-dependent phonemes in the pronunciations
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Table 6: Accuracy results of different compound models com-
pared to word-based model. Both AM and LM were trained
with consistent token-type and so, there is consistency between
the AM training and decoding lexicon.

Marking | Pronunciation Generic Knowledge
Style Modeling WERR (%) | WERR (%)
m Word 2.5 43
Subword 22 5.5
et Word 3.1 6.2
Subword 2.7 8.2
mt Word 1.8 4.5
Subword 1.0 4.8

of decompounds are handled like any regular word with both
_B and _E suffixes added to the boundary phonemes. On the
other hand, as the tokens for AM training are not segmented,
the phonemes at the edge of segments will not have any suf-
fixes in the AM training lexicon. For example, the pronuncia-
tion for schlafzimmerlicht in the AM training lexicon would be
likesBchlafzimmerlichtE. Whereas in the de-
coding lexicon, for +m+ marking style, the pronunciation for
the token sequence schlaf+ +zimmer+ +licht would be like
sBchlafEzBimmerEIBichtE. Toaddress this,
we retrained the AM for each marking style with a lexicon con-
sistent with the decoding lexicon. We tried two approaches for
position-dependent phonemes. In the first approach, we treat
marked and unmarked tokens in the same way as a regular word
and add suffixes to both boundary phonemes. We call this word-
based pronunciation modeling. The other approach is based on
Section 2.5 and Table 2 which we call as subword-based pro-
nunciation modeling. The results are shown in Table 6. It can
be seen that the accuracy improves significantly for compound
ASR systems when we match the AM training lexicon and the
decoding lexicon. m+ marking style, which attains the lowest
effective OOV rate, achieves the best performance with 3.1%
WERR on Generic test set and 6.2% WERR on Knowledge test
set with word-based pronunciation modeling. Using subword-
based pronunciation modeling results in reduced WERR com-
pared to word-based counterpart on the Generic test set but per-
forms better on the Knowledge test set.

4. Conclusions

We proposed a data-driven approach for identifying and seg-
menting compound words in textual data. We showed that
compound modeling can improve ASR performance over word-
based models, especially on tail entities and reduces the size
of ASR vocabulary. We also showed the importance of hav-
ing consistency between decoding and AM training lexicon.
We compared different marking styles and showed that right-
marked (m+) style, which has the lowest OOV rate, achieves
the best performance for our setup. Here are some examples of
the compounds which were OOV to word-based model and rec-
ognized by the compound ASR models: privatkliniken, burger-
gurken, lebensmitteltabelle, hauttemperatur. Compound mod-
eling not only enables recognition of OOV compound words
but also improves recognition of rare compounds which have
low language model probabilities in the word-based models.
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