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Abstract
To improve the performance of automatic speech recognition
(ASR) for a specific domain, it is essential to train a language
model (LM) using text data of the target domain. In this study,
we propose a method to transfer the domain of a large amount
of source data to the target domain and augment the data to
train a target domain-specific LM. The proposed method con-
sists of two steps, which use a bidirectional long short-term
memory (BLSTM)-based word replacing model and a target
domain-adapted LSTMLM, respectively. Based on the learned
domain-specific wordings, the word replacing model converts
a given source domain sentence to a confusion network (CN)
that includes a variety of target domain candidate word se-
quences. Then, the LSTMLM selects a target domain sentence
from the CN by evaluating its grammatical correctness based
on decoding scores. In experiments using lecture and conversa-
tional speech corpora as the source and target domain data sets,
we confirmed that the proposed LM data augmentation method
improves the target conversational speech recognition perfor-
mance of a hybrid ASR system using an n-gram LM and the
performance of N -best rescoring using an LSTMLM.
Index Terms: speech recognition, language modeling, data
augmentation, domain transfer, text generation

1. Introduction
Based on the recent introduction of state-of-the-art neural net-
work (NN) modeling, the performance of automatic speech
recognition (ASR) has been greatly improved [1, 2] and var-
ious types of ASR-based applications, including voice search
services and smart speakers, have been actively developed.
Despite this great progress, since ASR is inherently a highly
domain-dependent technology, its performance for some low-
resourced domains, such as conversational speech recognition
and low-resourced language ASR, remains at an unsatisfactory
level [3–6].

To improve the ASR performance for such low-resourced
domains, a simple but promising way is to augment the data of
the target domain. Training data augmentation for ASR acous-
tic modeling has been performed extensively [7, 8]. In this
study, we focus on text data augmentation for ASR language
modeling [9–17]. The simplest and most popular method is to
use a large amount of text data from a well-resourced domain
in addition to a small amount of text data from the target do-
main [9–11]. In this method, domain-specific n-gram language
models (LMs) are first trained using each domain’s text data and
then linearly interpolated using mixing weights that are opti-
mized to reduce the development data perplexity. Another pop-
ular method is based on web searching [12–14]. In this method,
queries that represent the target domain are cast to a search en-
gine to collect documents that are relevant to the target domain.
Machine translation (MT) has also been used to translate a large
amount of text data of a well-resourced language to the corre-
sponding text data in a low-resourced language [15–17]. Good
ASR performance improvements are reported with these meth-
ods, although they have some drawbacks. The performance of
the n-gram LM interpolation method depends on how close the
domain of the additional data is to the target domain. The web

search-based method needs careful data cleaning (text normal-
ization) since the collected web documents are written in a wide
variety of formats. The MT-based method requires parallel data
of the source and target language pairs to train an MT system.

As in the conventional methods described above, in this
study, we assume a very common situation where a small
amount of target domain text data and a large amount of another
(source) domain text data are available. In this situation, we
propose a method that transfers the domain of a large amount
of source data to the target domain and augments the data to
train a target domain-specific LM. Our method can thus be used
in combination with the widely used n-gram LM interpolation
method [9–11] to obtain a better target domain LM.

Our proposed method consists of two steps, which use a
bidirectional long short-term memory (BLSTM)-based word re-
placing model [18] and a target domain-adapted LSTMLM, re-
spectively. By training the word replacing model using source
and target domain data sets with the domain label, it learns
domain-specific wordings (Section 2.1). Using the model with
a sampling method [19], we convert a given source domain sen-
tence to a confusion network (CN) [20], which includes a va-
riety of target domain candidate word sequences (Section 2.2).
Then, by using the LSTMLM, which can evaluate the valid-
ity of a long word sequence, we perform decoding on the CN
and select a target domain sentence that is expected to be gram-
matically correct (Section 2.3). To confirm the effectiveness of
the proposed method, we use lecture and conversational speech
corpora as the source and target domain data sets and conduct
experiments to augment the data to train an n-gram LM used
in a deep NN/hidden Markov model hybrid ASR system and an
LSTMLM used in N -best rescoring (Section 4).

2. Proposed LM data augmentation method
We describe in detail the proposed LM data augmentation
method. We first describe the BLSTM-based word replacing
model [18], which was originally proposed for text data aug-
mentation in text classification tasks. Then, we describe the
two-step text generation procedure, i.e. CN generation by word
replacing with sampling and sentence selection from the CN
using an LSTMLM.

2.1. BLSTM-based word replacing model
Figure 1 shows the domain-conditioned word prediction proce-
dure using the BLSTM-based word replacing model [18]. As
with a BLSTMLM [21], given a sentence (word sequence) W
= w1:T = w1, · · · , wT of length (number of words) T , the
model estimates word probability distributions for each time
step t = 1, · · · , T .

Given a forward (backward) partial word sequence w1:t−1

= w1, · · · , wt−1 (wT :t+1 = wT , · · · , wt+1), a forward (back-
ward) LSTM unit recursively estimates forward (backward)
hidden state vectors and, as a result, provides the hidden state
vector at time step t− 1 (t+ 1) as,

−→
h t−1 = fwlstm(wt−1,

−→
h t−2), (1)

←−
h t+1 = bwlstm(wt+1,

←−
h t+2). (2)
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Then, these hidden state vectors and a scalar value d are con-
catenated as,

hd
t = concat(

−→
h t−1,

←−
h t+1, d), (3)

where d is the domain label and hd
t is the domain-conditioned

hidden state vector at time step t. Based on our experimental
settings described in Section 4, we define d as,

d =

{
0, Lecture (source domain),

1, Conversational (target domain).
(4)

hd
t is then input to a linear layer, which is followed by the

softmax activation function, and finally, we obtain the domain-
conditioned word probability distribution at time step t as,

zdt = linear(hd
t ), (5)

P (ŵt|W \ {wt}, d) = softmax(zdt )idx(ŵt), (6)

where zdt is the domain-conditioned logit vector (its dimension
equals the vocabulary size V ), ŵt is the predicted word at time
step t, idx(ŵt) is the index of ŵt in the vocabulary, and W \
{wt} is the given sentence W without wt. The vocabulary is
defined to cover all the words included in the two domain text
corpora.

In the model training, we first pretrain the model using the
two domain text corpora without the domain label, and then we
fine-tune the model again using the two domain text corpora
with the domain label. With this fine-tuning using the domain
label, the model learns the domain-specific wordings. For ex-
ample, as shown in Fig. 1, given the forward partial word se-
quence, w1:t−1 = {· · · , i, like}, and the backward partial word
sequence, wT :t+1 = {· · · , much, very}, the model gives high
probabilities for the words, e.g. asr, tts, and dnn, when the
domain label is set at 0 (lecture). In contrast, it gives high prob-
abilities for the words, e.g. movie, golf, and cooking, when the
domain label is set at 1 (conversational).

2.2. CN generation by word replacing and sampling

In the text generation, we input a source lecture domain (d = 0)
sentence to the model but change its domain label to conversa-
tional (d = 1). As a result of word replacing for each time
step, we obtain a sequence of domain-conditioned word prob-
ability distributions. Then, by selecting the highest probability
words from the sequence, we can obtain a target conversational
domain (d = 1) sentence.

However, with this procedure, we can generate only one
target domain sentence from one input source domain sentence.
To generate the desired number of target domain sentences
from one input source domain sentence, we employ a sampling
method that is based on a Gumbel distribution [19]. We sam-
ple i.i.d. samples V times from the normal Gumbel distribution
and make a V -dimensional sample vector as, g = [g1, · · · , gV ],
where gi ∼ Gumbel(0, 1). Then, we add g to zdt and obtain a
perturbed version of the domain-conditioned word probability
distribution at time step t as,

z̃dt = (zdt + g)/τ, (7)

P̃ (ŵt|W \ {wt}, d) = softmax(z̃dt )idx(ŵt), (8)

where τ is the temperature parameter (τ > 0). By repeating this
procedure for each time step and selecting the highest probabil-
ity word at each time step, we can generate one target domain
sentence from one source domain sentence. Then, by repeat-
ing the above procedure M times, we can generate M (= the
desired number of) target domain sentences from one source
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Figure 1: Domain-conditioned word prediction procedure at
time step t using the BLSTM-based word replacing model.

domain sentence. Note that, if we use a smaller τ value, higher
probability words tend to be selected at each time step (small
variety). In contrast, if we use a larger τ value, other words will
also have a chance to be selected (large variety). We need to
adjust τ to generate target domain sentences with a reasonable
level of variety.

With the above procedure, we can generate the desired
number of target domain sentences from one input source do-
main sentence. However, in the above procedure, since words
are selected individually at each time step, the generated sen-
tences are not necessarily grammatically correct. To improve
the grammatical correctness of the generated sentences, we per-
form sentence selection using an LSTMLM as described in
Section 2.3. To perform it efficiently, we convert a sequence
of word probability distributions to a confusion network (CN)
[20]. Given the word probability distribution at a time step, we
keep only higher probability words and prune the other lower
probability words, as shown on the left of Fig. 1. The pruning
threshold is defined based on the number of words to keep (K)
and the cumulative probability of the kept words (Q). The word
probabilities are normalized within the kept words. By repeat-
ing this procedure for each time step, we can obtain a CN that
includes a variety of target domain candidate word sequences,
as shown in the lower half of Fig. 2.

2.3. Sentence selection from CN using LSTMLM
As shown in the upper half of Fig. 2, we select a grammati-
cally correct target domain sentence from the CN by perform-
ing decoding (beam search) on the CN using a unidirectional
LSTMLM that can evaluate the validity of a long word se-
quence. The LSTMLM is adapted to the target domain using
the target domain text data. We define the score (log proba-
bility) function of the partial word sequence (hypothesis) w1:t

during decoding as,

logP (w1:t) = λ logPlstm(wt|w1:t−1)

+ (1− λ) logPcn(wt) + logP (w1:t−1), (9)
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Figure 2: Procedure for generating a conversational (target)
domain sentence from a lecture (source) domain sentence.

where Plstm(wt|w1:t−1) is the probability of the word wt pre-
dicted by the LSTMLM given the word history w1:t−1, Pcn(wt)
is the probability of wt attached to the CN, P (w1:t−1) is the
probability of the hypothesis w1:t−1, and λ (0≤λ≤ 1) is the
weight that balances Plstm(wt|w1:t−1) and Pcn(wt). Using the
above-defined score function, we perform decoding with hy-
pothesis pruning that is based on the maximum number of hy-
potheses after the pruning (B). Then, at time step T , we can
obtain a target domain sentence as the highest score hypothesis.
If we use a larger λ value, the grammatical correctness of the se-
lected sentences is emphasized. In contrast, if we use a smaller
λ value, the variety of the selected sentences is increased.

Figure 2 summarizes the procedure for generating a con-
versational (target) domain sentence from a lecture (source) do-
main sentence. We repeat this procedure M times for one in-
put source domain sentence and repeat them for all sentences
included in the source domain corpus. As a result, we can gen-
erate a target domain corpus that is M times larger than the
original source domain corpus.

3. Relation to prior work
The most relevant studies to our study are [22] and [23], which
are based on neural text generation [24]. In these studies, neural
LMs are adapted to the target domain using a small amount of
target domain text data, and the adapted neural LMs are used
to generate a large amount of target domain text data by re-
ceiving the prefix contexts. Then, using the generated data,
domain-specific n-gram LMs are trained to improve the per-
formance of hybrid ASR systems for the target domain. Good
ASR performance improvements are reported in [22] and [23].
However, in these studies, text domain transfer is performed by
using only the domain-adapted neural LMs, and their effective-
ness is evaluated only with the n-gram LMs used in hybrid ASR
systems (since the n-gram LM-based hybrid systems still show
high ASR performance [25–27]).

In contrast to [22] and [23], in this study, we perform
text domain transfer by using a BLSTM-based word replacing
model [18], which learns domain-specific wordings, in combi-
nation with a domain-adapted LSTMLM, i.e. our method in-
cludes the methods of [22,23] (and that of [18]). If we set λ at 1
in Eq. (9), our method becomes close to [22, 23] (and, if we set
λ at 0, our method equals [18]). We also evaluate the effective-
ness of our method with LSTMLMs used for N -best rescoring
in addition to the evaluation with the n-gram LMs.

As for rescoring, a recurrent NN LM trained with neural
LM generated texts (as with [22, 23]) is used for rescoring in

Table 1: Details of the CSJ and NTT speech corpora.

Training Dev Eval

Corpus CSJ NTT NTT NTT
Domain Lect. Conv. Conv. Conv.
Hours 537 106 11 11
Number of sentences 413k 59k 4748 4646
Number of words 7M 396k 32k 32k
Ave. sent. len. (#words) 17.3 6.7 6.8 6.9
Vocabulary size 66.6k 11.1k 2381 2325

Table 2: Structures of the BLSTM-based word replacing model
and LSTMLMs for sentence selection and N -best rescoring.

Word replacing LSTMLM

Number of LSTM layers 1 2
Number of LSTM nodes 1024 650
Number of linear layers 1 1
Number of linear nodes 1024 650
Softmax (=vocabulary) size 68.9k 68.9k

[28]. Good performance is reported, but in [28], text generation
is performed in a closed domain scenario, which is different
from our (and [22, 23]’s) targeting domain transfer scenario.

4. Experiments
To confirm the effectiveness of the proposed LM data augmen-
tation method, we conducted experiments using two different
domain speech corpora in two ASR scenarios, i.e. performing
ASR with a hybrid system using n-gram LMs as with [22, 23]
and performing N -best rescoring using LSTMLMs.

4.1. Experimental settings

As the source domain (d=0) corpus, we used the corpus of
spontaneous Japanese (CSJ) [29], which is a large scale lec-
ture speech corpus. As the target domain (d=1) corpus, we
used an in-house Japanese conversational speech corpus called
NTT meeting (NTT) [4], which contains casual conversations
in group meetings. Table 1 shows the details of these corpora
and their large different characteristics.

Using the CSJ and NTT training data sets, with the proce-
dure described in Section 2.1, we trained a BLSTM-based word
replacing model [18] with the structure shown in Table 2. We
used PyTorch [30] for all the NN modeling in this study. We
pretrained the model for five epochs without using the domain
label and fine-tuned the model for another five epochs using the
domain label. The final model was used for CN generation.

In the CN generation, with the procedure described in
Section 2.2, we input sentences from the CSJ training data
(d=0) to the word replacing model with the target conversa-
tional domain label (d=1) and generated target domain CNs.
Then, with the procedure described in Section 2.3, we selected
target domain sentences from the CNs using a unidirectional
LSTMLM with the structure shown in Table 2. The LSTMLM
was first trained using the CSJ and NTT training data sets for
20 epochs and then adapted using the NTT training data for
one epoch with a small learning rate [22, 23]. From the re-
sults of preliminary experiments, we set the hyperparameters
of the CN generation and sentence selection as, τ =1, K =5,
Q=0.8, λ=0.3, and B=5. We generated M target domain
sentences from one source domain sentence. As a result, we ob-
tained the target domain generated CSJ training data (hereafter,
referred to as GenCSJ) that is M times larger than the original
CSJ training data. We set M at 1, 10, and 100, i.e. we obtained
GenCSJx{1 | 10 | 100}.
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Table 3: Number 1 to 9 are results obtained with the hybrid ASR system using the nine trigram LMs. PPLs shown in parentheses cannot
be compared with the others because of the different vocabulary sizes. Number 10 to 13 are 100-best rescoring results obtained with
the four LSTMLMs applied to the 100-best hypotheses obtained with model 9, i.e. the best trigram LM results.

Vocab. Development data Evaluation data
No. Type Model size OOV PPL WER OOV PPL WER

1. Trigram NTT 11.1k 1.42 (44.9) 21.8 1.34 (44.5) 21.3
2. Trigram CSJ 66.6k 2.07 (136.9) 23.0 2.04 (134.9) 22.2

3. Trigram GenCSJx1 32.1k 0.79 (85.7) 21.6 0.71 (89.2) 20.7
4. Trigram GenCSJx10 42.6k 0.51 (79.7) 20.7 0.47 (82.1) 19.9
5. Trigram GenCSJx100 43.1k 0.49 (76.2) 20.4 0.45 (78.3) 19.6

6. Trigram NTT + CSJ [9–11] 68.9k 0.39 46.4 20.2 0.40 45.3 19.4

7. Trigram NTT + CSJ + GenCSJx1 68.9k 0.39 46.4 20.0 0.40 45.4 19.1
8. Trigram NTT + CSJ + GenCSJx10 68.9k 0.39 45.1 19.8 0.40 44.1 18.9
9. Trigram NTT + CSJ + GenCSJx100 68.9k 0.39 44.3 19.6 0.40 43.3 18.7

10. LSTMLM NTT + CSJ 68.9k 0.39 28.0 18.8 0.40 27.6 17.9

11. LSTMLM NTT + CSJ + GenCSJx1 68.9k 0.39 27.6 18.4 0.40 27.3 17.7
12. LSTMLM NTT + CSJ + GenCSJx10 68.9k 0.39 27.7 18.3 0.40 27.0 17.5
13. LSTMLM NTT + CSJ + GenCSJx100 68.9k 0.39 27.7 18.2 0.40 27.4 17.4

We trained five trigram LMs with SRILM [10] using the
CSJ training data, the NTT training data, and GenCSJx{1 | 10 |
100}, respectively. We applied Kneser-Ney smoothing [31]
to these LMs. Hereafter, we refer to the LMs by their train-
ing data names. We also obtained four interpolated trigram
LMs [9–11]. One was obtained by interpolating the two trigram
LMs, NTT and CSJ, i.e. NTT+CSJ, and the other three were
obtained by interpolating the three trigram LMs, NTT, CSJ, and
GenCSJx{1 | 10 | 100}, i.e. NTT+CSJ+GenCSJx{1 | 10 | 100}.
Their mixing weights were optimized to reduce the perplexity
(PPL) of the NTT development data [10].

We also trained four unidirectional LSTMLMs, i.e. NTT+
CSJ and NTT+CSJ+GenCSJx{1 | 10 | 100}, whose structure is
shown in Table 2. We trained them using the corresponding
data sets for 20 epochs and selected the models that showed the
lowest PPLs for the NTT development data.

We performed ASR using the Kaldi hybrid ASR system
[32]. A time delay NN-based acoustic model [33] was trained
using the CSJ and NTT training data sets. Using this acous-
tic model and a trigram LM described above, one-pass decod-
ing was performed using a weighted finite-state transducer [34].
We also performed 100 (=N )-best rescoring with Kaldi using
an LSTMLM described above. We evaluated the nine trigram
LMs and the four LSTMLMs with their out-of-vocabulary rates
(OOVs), PPLs, and ASR word error rates (WERs) for the NTT
development and evaluation data sets.

4.2. Experimental results
Table 3 shows the experimental results. We first look at the
results obtained with the hybrid ASR system using the nine tri-
gram LMs. Comparing GenCSJx1 (model 3) with CSJ (model
2), GenCSJx1 shows the lower OOVs and WERs than CSJ.
From this result, we can confirm that the text domain transfer
is successfully performed with our proposed method. We found
that 38.5% of the words in the CSJ training data are replaced
with other words to generate GenCSJx1. GenCSJx1 also out-
performs NTT (model 1). Table 4 shows the effect of λ on the
performance of GenCSJx1 (Section 2.3). From this table, we
can confirm that, in the domain-transferred text generation, us-
ing both the word replacing model and the LSTMLM with an
appropriate weight (λ=0.3) is better than using only the word
replacing model (λ=0.0) [18] or using only the LSTMLM
(λ=1.0) [22, 23] (Section 3). Comparing GenCSJx{10 | 100}
(models 4 and 5) with GenCSJx1 (model 3), we can confirm the

Table 4: WERs obtained with GenCSJx1 by changing λ.

Model Dev Eval

GenCSJx1 with λ=0.0 [18] 21.8 21.2
GenCSJx1 with λ=0.3 (model 3) 21.6 20.7
GenCSJx1 with λ=1.0 [22, 23] 22.0 21.3

effectiveness of using the more generated text data. Then, com-
paring NTT+CSJ+GenCSXx{1 |10 | 100} (models 7, 8, and 9)
with NTT+CSJ (model 6), we can confirm that the proposed
method successfully improves the widely used n-gram LM in-
terpolation method [9–11].

Next, we look at the 100-best rescoring results using the
four LSTMLMs. Rescoring was performed on the best trigram
LM results, i.e. the results obtained with model 9. Comparing
the results of models 9 and 10, we can confirm the large effect
of using the LSTMLM and performing rescoring. Comparing
NTT+CSJ+GenCSJx{1 |10 | 100} (models 11, 12, and 13) with
NTT+CSJ (model 10), we can confirm the steady WER reduc-
tions as with the trigram LM results. However, the effect of
using the more generated text data is slightly reduced compared
with the trigram LM results. We need to further investigate
how to effectively utilize a large amount of generated texts in
LSTMLM training. Interestingly, a lower PPL model does not
necessarily show a lower WER. PPL is calculated using refer-
ence transcriptions but N -best rescoring is performed on ASR
hypotheses that have ASR errors, i.e. the purpose of N -best
rescoring is to find better ASR hypotheses, even though they
may have errors [35, 36]. The generated texts are not always
completely correct and may resemble errors of better ASR hy-
potheses. Therefore, an LSTMLM trained using the generated
texts may perform robustly in N -best rescoring.

5. Conclusion and future work
We proposed an LM data augmentation method by generating
domain-transferred texts using a BLSTM-based word replacing
model [18] and an LSTMLM. We experimentally confirmed its
effectiveness by performing ASR with a hybrid system using
n-gram LMs and N -best rescoring using LSTMLMs. Future
work will include the use of a more advanced deep Transformer
model [37, 38] for text generation [23] and the evaluation in an
end-to-end ASR system [39, 40].
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