
Efficient MDI Adaptation for n-gram Language Models

Ruizhe Huang1, Ke Li1, Ashish Arora1, Daniel Povey2, Sanjeev Khudanpur1

1Center for Language and Speech Processing, The Johns Hopkins University, Baltimore, USA
2Xiaomi Corporation, Beijing, China

{huangruizhe09, ashish.arora.88888, dpovey}@gmail.com, {kli26, khudanpur}@jhu.edu

Abstract
This paper presents an efficient algorithm for n-gram language
model adaptation under the minimum discrimination informa-
tion (MDI) principle, where an out-of-domain language model
is adapted to satisfy the constraints of marginal probabilities of
the in-domain data. The challenge for MDI language model
adaptation is its computational complexity. By taking advan-
tage of the backoff structure of n-gram model and the idea of
hierarchical training method, originally proposed for maximum
entropy (ME) language models [1], we show that MDI adapta-
tion can be computed in linear-time complexity to the inputs in
each iteration. The complexity remains the same as ME models,
although MDI is more general than ME. This makes MDI adap-
tation practical for large corpus and vocabulary. Experimental
results confirm the scalability of our algorithm on large datasets,
while MDI adaptation gets slightly worse perplexity but better
word error rates compared to simple linear interpolation.
Index Terms: speech recognition, language model adaptation,
n-gram, maximum entropy model, MDI

1. Introduction
The n-gram language model (LM) still plays an important role
in today’s automatic speech recognition (ASR) pipeline. There
are several reasons: (i) n-gram LMs can be represented by
weighted finite-state transducers (WFST) and integrated into
first-pass decoding [2], (ii) training and querying n-gram LMs
are cheaper than neural LMs, (iii) in practice, the best perfor-
mance is achieved by interpolating n-gram and neural LMs [3].

Consider a common scenario when one is developing an
ASR system for a new application, while little training data is
available and collecting sufficient domain-specific (in-domain)
data requires a considerable amount of time and efforts. The
available data is too limited to estimate a robust LM. Fortu-
nately, we can do better by capitalizing on some large, general-
domain background (out-of-domain) corpus assuming the out-
of-domain data contains information common with the applica-
tion domain. This motivates LM adaptation [4, 5], which is to
estimate a robust LM based on both in- and out-of-domain data.

The question is how to combine information from the two
sources in a suitable manner? The commonly used approaches
for n-gram LMs fall under two categories: model interpolation
and constraint-based methods. The model interpolation meth-
ods can be either linear (simple linear [6], history-dependent
[7, 8], Bayesian [9] interpolation) or non-linear (log-linear [10]
interpolation, fill-up technique [11]). Note that simple linear
interpolation is very effective and probably the most popular
adaptation method. Recently, [9] found that count-merging, as
a special case of maximum a posterior (MAP) adaptation, is the-
oretically similar to Bayesian interpolation. On the other hand,
the constraint-based methods [12], such as ME or MDI models,
attempt to choose the adapted LM such that it satisfies some

constraints in the adaptation domain, while staying as close as
possible to some prior distribution, measured by, e.g., Kullback-
Leibler distance. This paper investigates the MDI adaptation.

There has been previous work on MDI adaptation for n-
gram LMs [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], with sev-
eral variants of task definition, e.g., adaptation for cache model,
within- or cross-corpus adaptation. Although MDI has appeal-
ing theoretical properties, the computation is non-trivial and ex-
pensive, which grows almost exponentially (detailed in section
3) with the size of the vocabulary [5] in a naive implementa-
tion. To reduce the complexity, [19, 17] proposed approxima-
tion algorithms and [23, 24] devised parallelization to speed up
the computation. [18] proposed a linear-time algorithm for un-
igram constraints. On the other hand, there has been work on
ME model that utilizes the back-off structure of the LMs to re-
duce computational complexity to linear time per iteration [1],
but it is not clear whether the same trick can carry over to MDI
which is more general than ME. Besides, regarding model per-
formance, most previous work has found that MDI adaptation
performs slightly worse than simple linear interpolation [21],
but we are interested to see if there can be any difference when
operating on very large corpus once we have an efficient MDI
algorithm for arbitrary marginal distribution constraints. More-
over, in the experiment, we will propose a novel approach of
applying MDI adaptation to improve the first-pass LM while
keeping the model size unchanged.

2. Background
2.1. n-gram Language Model

A language model (LM) is a probability distribution over word
sequences W = w1w2 . . . wL, usually reduced to a word-by-
word probability via the chain rule p(W) =

∏L
i=1 p(wi|w

i
1),

where wji ≡ wi, wi+1, . . . , wj . An n-gram LM assumes that
this distribution depends only on the previous n− 1 words, i.e.,
p(wi|wi1) ≈ p(wi|wi−1

i−n+1), where wi−1
i−n+1 is the history hi of

word wi. We omit the index i when the context is clear.
Given the vocabulary V , n-gram LM defines a set of con-

ditional probabilities p(w|h) for any hw ∈ V n. However, the
space V n is very large that not every n-gram hw is seen in
the training data, known as the data sparsity problem. Thus,
smoothing techniques have been used to estimate the prob-
ability p(w|h) for the unseen n-grams. The most popular
techniques is backing-off. The idea is to recursively estimate
p(w|h) of unseen n-grams based on the lower order (n − 1)-
gram probabilities p(w|h′), where h′ = wi−1

i−n+2, which may
have been seen in the corpus. More specifically,

p(w|h) =

{
p∗(w|h) hw is seen in corpus
bow(h) · p(w|h′) otherwise, (1)

where the discounted probability p∗(w|h) and the back-off
weight bow(h) are together to ensure the conditional probabil-

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-29094916

ity sums to one:
∑
w∈V p(w|h) = 1. We will consider n-gram

LMs having back-off structure in the rest of the paper. In prac-
tice, such LMs are stored in ARPA format [25]. Note that LMs
smoothed by interpolation [25] can also be stored as ARPA. We
measure the size of an n-gram LM as the total number of entries
of order 1, . . . , n when the LM is represented as ARPA.

2.2. MDI Adaptation

The idea of LM adaptation under the minimum discrimination
information (MDI) principle is to compute the adapted distri-
bution such that it satisfies the constraints characterizing in-
domain distribution, and also stays closest to the out-of-domain
distribution. The constraints are usually expressed as marginal
distributions. Formally, given (i) the vocabulary V , (ii) the
out-domain LM pout(w|h), (iii) the empirical history distribu-
tion p̃(h) which is commonly approximated by either the in-
domain probabilities pin(h) or out-of-domain pout(h), and (iv)
K marginal distributions p̃(Si) where Si ⊂ V n, i = 1, . . . ,K
derived from the in-domain data, the adapted LM pad(w|h)
is defined by minimizing the following conditional Kullback-
Liebler (KL) divergence:

pad(w|h) = arg min
p

D(p||pout|p̃) (2)

= arg min
p

∑
h∈V n−1

p̃(h)
∑
w∈V

p(w|h) log
p(w|h)

pout(w|h)
, (3)

while satisfying the constraints:∑
h∈V n−1

p̃(h)
∑
w∈V

p(w|h)fi(h,w) = p̃(Si), i = 1, . . . ,K. (4)

where fi are indicator functions of (h,w) ∈ Si. Note that Eq. 3
can also be viewed as the KL divergence between the joint dis-
tribution p(h,w) and pout(h,w) assuming they have the same
history distribution p̃(h). Also notice in the case that pout is the
uniform distribution, pad is indeed a maximum entropy model.

If the constraints in Equation 4 are consistent, the solution
of the above optimization problem exists and is unique [26]. It
has the following form, with parameters {λi}.

pad(w|h) =
pout(w|h) · α(h,w)

Z(h, λ1, . . . , λK)
, (5)

where the scaling factor α(h,w) = exp (
∑K
i=1 λifi(h,w)),

and Z(h, λ1, . . . , λK) is the normalization term summing up
the numerators. This solution can be obtained by generalized
iterative scaling (GIS) algorithm [26], sketched in Algorithm 1,
or some of its modern fast counterparts [24]. The iterations can
be terminated when the results converge or nearly converge.

3. Efficient Algorithm: The Hierarchical
Training Method

The challenge for implementing the above GIS algorithm is
its computational complexity resulting from Line 5 (normaliza-
tion) and 9 (marginalization). A naive implementation may take
O(K ∗ # of seen histories ∗ |V |) time per iteration [5]. An im-
provement can be made to O(# of seen histories ∗ |V |+K) if
we store the constraints in Line 8 in a hash table and accumulate
the summation in Line 9, but this complexity is still astronomi-
cal when the corpus and vocabulary V is large. Thus, we need
to re-organize the summation happening in Line 5 and 9.

Algorithm 1 Generalized Iterative Scaling (GIS) Algorithm

Require: V , pout(w|h), p̃(h) and p̃(Si)
1: Set λ(0)

1 = λ
(0)
2 = . . . = λ

(0)
K = 0, n = 0

2: while stopping criterion not met do
3: Compute α(n)(h,w) = exp

(∑K
i=1 λ

(n)
i fi(h,w)

)
4: for each seen history h in training data do
5: Compute normalization term:

Z(h, λ
(n)
1 , . . . , λ

(n)
K) :=

∑
w pout(w|h)α(n)(h,w)

6: end for
7: Update each entry of back-off LM:

p(n)(w|h) := pout(w|h)∗α(n)(h,w)

Z(h,λ
(n)
1 ,...,λ

(n)
K

)

8: for j = 1, · · · ,K do
9: Marginalize:

p(n)(Sj) :=
∑
h p̃(h)

∑
w p

(n)(w|h)fj(h,w)

10: Update params: λ(n+1)
j := λ

(n)
j + log

p̃(Sj)

p(n)(Sj)

11: end for
12: n := n+ 1
13: end while
14: return p(n)(w|h) as pad

3.1. The Hierarchical Training Method: MDI v.s. ME

To overcome this challenge, [1] proposed the hierarchical train-
ing method for ME models. The algorithm only requires linear
time to its inputs per iteration. The trick is based on the back-off
structure of probability p(n)(w|h). In this paper, we show that
similar algorithmic trick can be applied to MDI with additional
cares. This means MDI adaptation incurs no extra computation
complexity although it is more general than ME. The key is to
handle the non-uniform pout appropriately.

To illustrate the idea, we take trigram LM as an example.
Consider a general LM p(w3|w2

1) having the back-off structure
as in Equation 1. We also define a set of real-valued scaling fac-
tors c(·), such that there are only K non-zero c(hw)− c(h′w).
Now, we define the left-aligned and right-aligned summation of
the product of p(w3|w2

1) and the general scaling factor c(w3
1):

ΣL(w2
1) =

∑
w3∈V

p(w3|w2
1) · c(w3

1) (6)

ΣR(w3
2) =

∑
w1∈V

p(w3|w2
1) · c(w3

1) (7)

Two equations only differ in the term summed over. We will
show later that ΣL and ΣR are related to the normalization term
(Line 5) and marginal probability (Line 9) respectively. Notice
that in ME, p(w3|w2

1) is just a uniform distribution.

3.2. Computing ΣL(w2
1) as normalization for history w2

1

In Equation 6, we compute ΣL(w2
1) by summing over w3 ∈ V

given historyw2
1 , which costs |V | addition operations. This cost

can be greatly reduced by dynamic programming [18, 10]. One
can verify that Eq. 6 can be re-written as:

ΣL(w2
1) =

∑
w3∈V ∧seen(w3

1)

(
p∗(w3|w2

1)− bow(w2
1) · p(w3|w2)

)
· c(w3

1)

+ bow(w2
1)
∑
w3∈V

p(w3|w2) · c(w3
2)

+ bow(w2
1)

∑
w3∈V ∧c(w3

1)6=c(w
3
2)

p(w3|w2) ·
(
c(w3

1)− c(w3
2)
)
.

4917

For the second term above, we can define ΣL(w2) =∑
w3∈V p(w3|w2)·c(w3

2), which is a sub-problem for ΣL(w2
1).

And the base case is ΣL(∅) =
∑
w3∈V p(w3) · c(w3). Thus,

ΣL(w2
1) can be computed hierarchically and bottom-up from

ΣL(∅) along the back-off structure of p(w3|w2
1).

As of complexity, computing ΣL(∅) requires O(|V |) time
for only once. ΣL(w2

1) and ΣL(w2) can be computed from
the ΣL of the lower-order n-grams with the complexity of the
number of seen n-grams along the way, plus the number of non-
zero difference of scaling factors (K at most). Thus, overall,
the total time is proportional to the number of seen entries in
pout(w3|w2

1) plus O(K).

3.3. Computing ΣR

Consider Eq. 8, where we compute the right-aligned ΣR(w3
2)

by summing over w1 ∈ V . Similarly, we define the lower or
higher order right-aligned summations as follows:

ΣR(w3) =
∑

w2
1∈V 2

p(w3|w2
1) · c(w3

1) (8)

ΣR(w3
1) = p(w3|w2

1) · c(w3
1) (9)

One can decompose the computation as in the previous section
and verify that dynamic programming does not work here any-
more. Instead, we will make use of the idea of shared computa-
tion, which means we go over the data for only one pass, but we
accumulate the values correspondingly to all related constraints.

First, let us compute ΣR(w3
2) as follows:

ΣR(w3
2) =

∑
w1∈V ∧seen(w3

1)

(
p∗(w3|w2

1)− bow(w2
1) · p(w3|w2)

)
· c(w3

1)

+ p(w3|w2) · c(w3
2) · g(w2)

+
∑

w1∈V ∧c(w3
1)6=c(w

3
2)

p(w3|w2) · bow(w2
1) ·

(
c(w3

1)− c(w3
2)
)

We denote the auxiliary function g(w2) =
∑
w1∈V bow(w2

1)
in the second term above and will address its computation later.
At the same time, let us decompose ΣR(w3) in the same way:

ΣR(w3) =
∑

w2
1∈V 2∧seen(w3

1)

(
p∗(w3|w2

1)− bow(w2
1) · p(w3|w2)

)
· c(w3

1)

+
∑

w2∈V ∧seen(w3
2)

(p∗(w3|w2)− bow(w2) · p(w3)) · c(w3
2) · g(w2)

+ p(w3) · c(w3) · g(∅)

+
∑

w2∈V ∧c(w3
2)6=c(w3)

p(w3) · bow(w2) · g(w2) ·
(
c(w3

2)− c(w3)
)

+
∑

w2
1∈V 2∧c(w3

1) 6=c(w
3
2)

p(w3|w2) · bow(w2
1) ·

(
c(w3

1)− c(w3
2)
)

We denote g(∅) =
∑
w2∈V bow(w2) · g(w2). Assuming the

values of g(·) are known, we can compute ΣR(w3), ΣR(w3
2)

and ΣR(w3
1) at the same time: the algorithm enumerates

the seen n-grams in LM p(w3|w2
1) and all non-zero differ-

ences of scaling factors and accumulate values to the corre-
sponding right-aligned sums that are involved. Details can
be found in our full paper [27]. The complexity is O(n ∗
of entries in p(w|h) +K), with n being a small constant.

Now, the remaining problem is how to compute the aux-
iliary function g(·) as defined previously. It turns out this is

a right-aligned sum in the ME case. More specifically, their
scaling factors are c(w2

1) = bow(w2
1) or c(w2

1) = bow(w2
1) ∗

bow(w2). Thus, computing g(·) can be shown to be also in lin-
ear time. In fact, computing the auxiliary function g(·) is what
makes the algorithm for MDI different from that of ME.

3.4. The back-off structure of pad(w|h)

Before computing the marginals in Line 9 of Algorithm 1, we
still need to show that the probability p(n)(w|h) or pad(w|h)
in Equation 5 has the back-off structure. This is important not
only for the computational purpose – so that the tricks for ΣL
and ΣR can be applied here – but also for being able to represent
the final adapted LM in ARPA format.

We claim that, if pout is a back-off model as in Equation 1,
then so is the exponential models p(n) and pad. We prove this
by giving the back-off expression of pad:

pad(w3|w2
1) =

 p∗ad(w3|w2
1) if w3

1 seen in pout
or w3

1 is a constraint
bowad(w

2
1) · pad(w3|w2) otherwise

where:

p∗ad(w3|w2
1) =

pout(w3|w2
1) · c(w3

1)

Z(w2
1)

bow∗ad(w
2
1) =

Z(w2)

Z(w2
1)
· bowout(w2

1)

The lower order n-grams of pad are defined analogously. There
will be at most (# entries in pout + # entries in pin) entries in
pad, same as in linear interpolation.

3.5. Computing marginalization as ΣR

Lastly, we come to compute the marginals in Line 9 of Algo. 1:

p(n)(Si) :=
∑
h

p̃(h)
∑
w

p(n)(w|h) · fi(h,w). (10)

Since it has been proved that p(n) is a back-off LM, we can
view

∑
w p

(n)(w|h)fi(h,w) as a right-aligned sum. However,
we need to further consider the multiplication term p̃(h). Fortu-
nately, the same trick computing ΣR can be applied here, with
some modification of the auxiliary function. For example, let
g(w2) =

∑
w1∈V p̃(w

2
1)bow(w2

1), and then it can be treated
in two ways efficiently, either (i) if p̃(w2

1) is an unsmoothed
maximum likelihood estimation, there will be a lot of zeros for
p̃(w2

1), or (ii) if p̃(w2
1) has a smoothed back-off (joint) distri-

bution, then this amounts to computing the right-aligned sum.
It can be shown that the computational complexity of marginal-
ization is linear in both ways. We omit the details here due to
space limit. Interested readers can refer to Appendix A at the
end of our full paper [27]. In all, we have shown how Algorithm
1 can be implemented efficiently.

3.6. Implementation Issues

Special care should be taken when dealing with n-grams w3
1

which containing <s> or <\s>, or whose suffix w3
2 is not seen.

To further speed up the computation, the algorithm can be im-
plemented in a vectorized manner with group-by operation for
summing up probabilities of n-grams of the same suffix.

4. Experimental Results
We will show the scalability of our algorithm and the effective-
ness of MDI adaptation with two different ways of application.

4918

Table 1: Comparing the perplexity (PPL), word error rate (WER, in %) of LMs with no adaptation, interpolation and MDI adaptation.

Corpus Test set
First-pass LM Rescoring with large n-gram LM

default MDI No adapt. Interpolation MDI (2-2-2) MDI (5-3-2) MDI (6-4-3)
PPL WER PPL WER PPL PPL WER PPL WER PPL WER PPL WER

AMI dev 84.6 20.0 84.3 20.0 384.1 80.5 19.6 86.6 19.4 87.1 19.4 87.9 19.4
eval 79.7 20.2 79.9 20.2 408.8 77.5 20.0 81.8 19.6 82.8 19.6 83.9 19.6

SWBD
dev 98.6 12.5 96.9 12.0 411.0 92.7 11.4 94.5 11.7 95.1 11.7 95.8 11.6

eval2000 179.2 14.2 117.5 14.0 161.6 85.6 13.4 88.9 13.2 89.4 13.2 89.4 13.2
rt03 167.8 17.3 109 17.2 149.4 78.6 16.3 82.2 16.2 82.7 16.1 82.7 16.1

WSJ dev93 186.6 7.0 161.3 6.8 223.3 134.2 6.3 134.8 6.2 135.1 6.3 136.8 6.3
eval92 164.8 4.7 142.7 4.7 222.2 118.7 4.0 117.4 3.9 118.0 3.9 120.0 3.9

Figure 1: Run-time of Algorithm 1 with various input sizes.

We simulate the LM adaptation scenario by taking three
speech corpora, Wall Street Journal (WSJ), Switchboard
(SWBD) and AMI-IHM (AMI) as in-domain data, and Google
One Billion Words [28] and Librispeech [29] as out-of-domain
data. We normalize the Google dataset with the similar scripts
generating normalized Librispeech LM training texts, result-
ing 702 million and 803 million words respectively. We com-
pute trigram LMs using the SRILM tool [30] with Kneser-Ney
smoothing and default settings, or use default Kaldi’s LMs. We
find the normalized Google dataset always out-perform Lib-
rispeech as the out-of-domain corpus, so we only report the re-
sults for Google dataset. We are interested whether the rich LM
information in the very large corpus can help the LM and ASR
task in the application domains. We use count thresholds to se-
lect the in-domain constraints, i.e., the marginals are considered
reliable when the counts of the n-grams is above the threshold.

4.1. Scalability
We implemented the proposed algorithm in Python with Numpy
and Pandas. In Figure 1, we compare the run-time per itera-
tion in seconds with various size of out-of-domain LM (blue)
and various number of constraints (blue). The in- and out-of-
domain data are taken to be SWBD and Google. We sample the
out-of-domain data at different sizes measured by the total num-
ber of seen entries in the ARPA file, and record the run-time per
iteration. We control the number of constraints by using differ-
ent constraint count thresholds. We can see that both lines show
linear scalability, and the run-time is denominated by the size of
out-of-domain data. Besides, it usually takes 60 ∼ 80 iterations
for the algorithm to converge to a near optimal solution, which
may be improved by more advanced optimization algorithms.

4.2. Effectiveness of Adaptation
We compare the LMs with and without adaptation, and with dif-
ferent adaptation methods, i.e., simple linear interpolation and
MDI. We evaluate the LMs in perplexity (PPL) and word er-
ror rate (WER) when used in an hybrid ASR system. We use
the latest recipes in the open-source speech recognition toolkit
Kaldi [31] to run the ASR experiments. The acoustic model

uses factorized TDNN architecture [32] and is trained with LF-
MMI criteria [33]. The features are 40-dimensional MFCC with
100-dimensional i-vectors appended to the MFCC. The training
data is augmented with speed and volume perturbation.

4.2.1. Performance in the Rescoring

As in a common adaptation scenario, we adapt the large, out-
of-domain LM to satisfy the marginal distribution constraints
derived from the in-domain data. As the Google corpus is large,
the resulting LM can have 61 ∼ 76 million entries depend-
ing on the vocabulary (which is AMI 50k, SWBD 30k, WSJ
20k). So the LMs are used for rescoring. From the right half
of Table 1, we can see that LM adaptation is effective for both
interpolation and MDI. The interpolated LMs have better per-
plexity most of the time, which is consistent with previous work
[15, 21], but we also find that MDI adapted LMs have better
WER. Also note the constraints we use for MDI, where 5-3-
2 means count thresholds of 5, 3, 2 are used for selecting uni-
grams, bigrams and trigrams as constraints. Thus, in fact, MDI
sees less information of the in-domain data than interpolation,
e.g., the MDI (6-4-3) above sees the least in-domain data. How-
ever, MDI requires additional information about the history dis-
tribution p̃(h), for which we take the maximum-likelihood in-
domain pin(h) as an approximation.

4.2.2. Performance in the First-Pass Decoding

We propose a novel approach of applying MDI adaptation: in-
stead of adapting the out-of-domain LM, we adapt the small,
in-domain LM, which is used in the first pass decoding of ASR,
so that it preserves the marginals of the larger and better inter-
polated LM. The constraints are selected to be all seen entries in
the in-domain LM, such that the model size remains unchanged
after adaptation. The results are a bit surprising. As we can see
in the left half of Table 1, the perplexity of the first-pass LM
gets improved significantly and lies between the default and in-
terpolated LMs. The first-pass WER also gets improved, not so
much though. It seems this is the advantage of MDI over inter-
polation: we have better control of the resulting model size. We
will investigate into this as the future work.

5. Conclusion and Future Work
In this paper, we propose an efficient MDI adaptation algorithm
for n-gram LMs. The algorithm relies on the back-off struc-
ture of the LMs, and takes linear time per iteration. We show
empirically our algorithm is truly scalable to very large corpus.
We also find that MDI adaptation gets close perplexity to linear
interpolation, but better WER. Future work may explore more
advanced optimization algorithms, better feature selection and
history distribution estimation techniques for MDI. Lastly, as
observed in the experiments, we will study using MDI adapta-
tion to improve small LMs for the first-pass decoding of ASR.

4919

6. References
[1] J. Wu and S. Khudanpur, “Efficient training methods for maxi-

mum entropy language modeling,” in Sixth International Confer-
ence on Spoken Language Processing, 2000.

[2] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech & Language,
vol. 16, no. 1, pp. 69–88, 2002.

[3] E. Shareghi, D. Gerz, I. Vulić, and A. Korhonen, “Show some love
to your n-grams: A bit of progress and stronger n-gram language
modeling baselines,” in Proceedings of NAACL-HLT, 2019, pp.
4113–4118.

[4] J. R. Bellegarda, “Statistical language model adaptation: review
and perspectives,” Speech communication, vol. 42, no. 1, pp. 93–
108, 2004.

[5] R. DeMori and M. Federico, “Language model adaptation,” in
Computational models of speech pattern processing. Springer,
1999, pp. 280–303.

[6] F. Jelinek and R. L. Mercer, “Interpolated estimation of Markov
source parameters from sparse data,” Proceedings, Workshop on
Pattern Recognition in Practice, pp. 381–397, 1980.

[7] X. Liu, M. J. F. Gales, and P. C. Woodland, “Use of contexts in
language model interpolation and adaptation,” Computer Speech
& Language, vol. 27, no. 1, pp. 301–321, 2013.

[8] B.-J. Hsu, “Generalized linear interpolation of language models,”
in ASRU. IEEE, 2007, pp. 136–140.

[9] E. Pusateri, C. Van Gysel, R. Botros, S. Badaskar, M. Hannemann,
Y. Oualil, and I. Oparin, “Connecting and comparing language
model interpolation techniques,” Proceedings of INTERSPEECH,
pp. 3500–3504, 2019.

[10] K. Heafield, C. Geigle, S. Massung, and L. Schwartz, “Normal-
ized log-linear interpolation of backoff language models is effi-
cient,” in Proceedings of ACL (Volume 1: Long Papers), 2016,
pp. 876–886.

[11] S. Besling and H.-G. Meier, “Language model speaker adapta-
tion,” in Proceedings of EUROSPEECH, 1995.

[12] R. Rosenfeld, “A maximum entropy approach to adaptive sta-
tistical language modelling,” Computer Speech and Language,
vol. 10, pp. 187–228, 1996.

[13] S. Della Pietra, V. Della Pietra, R. L. Mercer, and S. Roukos,
“Adaptive language modeling using minimum discriminant esti-
mation,” in Proceedings of ICASSP, 1992, pp. 633–636.

[14] P. S. Rao, M. D. Monkowski, and S. Roukos, “Language model
adaptation via minimum discrimination information,” in Proceed-
ings of ICASSP, 1995, pp. 161–164.

[15] P. S. Rao, S. Dharanipragada, and S. Roukos, “MDI adapta-
tion of language models across corpora,” in Proceedings of EU-
ROSPEECH, 1997.

[16] M. Weintraub, Y. Aksu, S. Dharanipragada, S. Khudanpur,
H. Ney, J. Prange, A. Stolcke, F. Jelinek, and E. Shriberg, “LM95
project report: Fast training and portability,” 1996.

[17] W. Reichl, “Language model adaptation using minimum discrim-
ination information,” in Proceedings of EUROSPEECH, 1999.

[18] M. Federico, “Efficient language model adaptation through mdi
estimation,” in Proceedings of EUROSPEECH, 1999.

[19] R. Kneser, J. Peters, and D. Klakow, “Language model adaptation
using dynamic marginals,” in Proceedings of EUROSPEECH,
1997.

[20] C.-H. Chueh and J.-T. Chien, “Reliable feature selection for lan-
guage model adaptation,” in Proceedings of ICASSP, 2008, pp.
5089–5092.

[21] S. F. Chen, “Shrinking exponential language models,” in Proceed-
ings of HLT-NAACL, 2009, pp. 468–476.

[22] N. Ruiz and M. Federico, “Mdi adaptation for the lazy: Avoid-
ing normalization in lm adaptation for lecture translation,” in Pro-
ceedings of International Workshop on Spoken Language Trans-
lation (IWSLT), 2012.

[23] R. Rosenfeld, “Adaptive statistical language modeling; a maxi-
mum entropy approach,” Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep., 1994.

[24] T. Alumäe and M. Kurimo, “Efficient estimation of maximum en-
tropy language models with n-gram features: an SRILM exten-
sion,” in INTERSPEECH, 2010.

[25] D. Jurafsky and J. H. Martin, Speech and Language Processing
(2nd Edition). USA: Prentice-Hall, Inc., 2009.

[26] J. N. Darroch and D. Ratcliff, “Generalized iterative scaling for
log-linear models,” The annals of mathematical statistics, pp.
1470–1480, 1972.

[27] R. Huang, K. Li, A. Arora, D. Povey, and S. Khudanpur, “Efficient
MDI Adaptation for n-gram Language Models,” arXiv e-prints, p.
arXiv:2008.02385, Aug. 2020.

[28] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn,
and T. Robinson, “One billion word benchmark for measuring
progress in statistical language modeling,” Proceedings of INTER-
SPEECH, 2014.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proceedings of ICASSP. IEEE, 2015.

[30] A. Stolcke, “SRILM - an extensible language modeling toolkit,”
in INTERSPEECH, 2002.

[31] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[32] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmoham-
madi, and S. Khudanpur, “Semi-orthogonal low-rank matrix fac-
torization for deep neural networks.” in INTERSPEECH, 2018,
pp. 3743–3747.

[33] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained
neural networks for ASR based on lattice-free MMI.” in INTER-
SPEECH, 2016, pp. 2751–2755.

4920

