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1. Introduction
Automatic Speech Recognition (ASR) systems are becoming
ubiquitous not only in the human-computer interaction systems,
such as voice assistants or dictation tools, but also in systems
processing human-human conversations. The abundance of the
available audio data makes it very tempting to use conversa-
tion transcripts as input data for spoken language understand-
ing. Most commercially available ASR systems do not produce
any punctuation or capitalization of output transcripts, which is
a serious limitation with respect to many downstream tasks. The
prerequisite for true spoken language understanding is the abi-
lity to comprehend spoken utterances, both at the semantic and
syntactic level. The latter requires a robust dependency parsing,
which, in turn, partially relies on correct punctuation.

Punctuation is also indispensable for intent annotation.
Consider the task of annotating instances of a negative senti-
ment in call transcripts. The phrase ”nobody came back and
I don’t like I said, he didn’t leave a slip” would be incorrectly
marked as an instance of negative sentiment due to the pres-
ence of the utterance ”I don’t like,” whereas in reality the phrase
should be punctuated as ”nobody came back and I don’t, like
I said, he didn’t leave a slip.” In general, missing punctuation
can introduce errors for phrases with personal references (”let’s
eat grandma” vs. ”let’s eat, grandma”), enumerations (”I love
cooking my family and pets” vs. ”I love cooking, my family,
and pets”), or prepositions at sentence boundaries (”taken care
of the refund” vs. ”taken care of. The refund”). The problem

of the inherent lack of punctuation is exacerbated by the pres-
ence of stochastic ASR errors, which for spontaneous human-
human conversations can amount to 15%-20% of transcribed
words [1]. Consider the following transcript: ”Hi my name is
e agent will do I have pleasure speaking with today”. It may
be very challenging to correctly introduce punctuation since the
actual utterance is ”Hi my name is Adrian who do I have plea-
sure speaking with today.”

Spontaneous speech is very different not only from the
written language, but from other types of speech as well [2].
Scripted speech and human-computer conversations tend to
have well-defined structure with clear demarcation of sentence-
like units, correct SVO (subject-verb-object) structures, and
limited vocabulary. Spontaneous speech, on the other hand, is
filled with all types of disfluencies which can account for 5%
of all words and affect more than 30% of utterances. These
disfluencies, which include backchannel markers, coordinat-
ing conjunctions, discourse markers, or filled pauses, hinder
transcript translation, summarization, information extraction, or
readability of transcripts. At the same time, the disfluencies are
known to play an important role in the management of interac-
tions, for instance, in upholding the turn by a speaker.

An important, yet often overlooked, aspect of spontaneous
human-human conversations is the overlap of utterances [3]. As
previous research suggests, the overlap in conversational speech
is substantial, and it is as frequent in phone conversations be-
tween strangers as in face-to-face meetings between close ac-
quaintances. The presence of the overlap makes diarization of
speech more difficult, which also affects the ability to model the
turn-taking realistically. Interestingly, we can see that the occur-
rence of the overlap changes the structure of utterances as the
speakers react dynamically to the interruptions by repeating cer-
tain phrases, correcting, or deleting them. An example of such
a change might be the increased number of question marks –
speakers use questions much more often than in regular speech,
not only due to the conversational nature of the exchange, but
also the need to request acknowledgements of comprehension
or verify comprehension by paraphrasing.

In principle, any punctuated text can be used to train a punc-
tuation model. Unfortunately, most of the available textual cor-
pora are not representative of spontaneous speech. Patterns
learned from Wikipedia, Web Crawl, or news corpora, hardly
generalize to the transcripts of spontaneous conversations. Ob-
taining new annotated datasets is also very challenging. Raw
conversational transcripts are illegible and manual restoration
of punctuation marks is both time-consuming and expensive.

The main hypothesis underlying our approach is that it is

Abstract 
Automatic Speech Recognition (ASR) systems introduce word 
errors, which often confuse punctuation prediction models, 
turning punctuation restoration into a challenging task. These 
errors usually take the form of homophones (words which 
share exact or almost exact pronunciation but differ in 
meaning) and oronyms (homophones which consist of 
multiple words). We show how retrofitting of the word 
embeddings on the domain-specific data can mitigate ASR 
errors. Our main contribution is a method for a better 
alignment of homophone embeddings and the validation of the 
presented method on the punctuation prediction task. We 
record the absolute improvement in punctuation prediction 
accuracy between 6.2% (for question marks) to 9% (for 
periods) when compared with the state-of-the-art model. 

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-12504906



possible to mitigate stochastic ASR errors by retrofitting static
word embeddings to the application domain. During punc-
tuation prediction we cannot correct the ASR errors, but the
retrofitted representation of words allows us to improve the ac-
curacy of punctuation prediction models. As our main contri-
bution, we validate this hypothesis by showing how pre-trained
GloVe embeddings can be retrofitted to the domain of call cen-
ter conversations by using Mittens [4], and how this retrofitting
improves the accuracy of punctuation prediction in transcribed
calls. Mittens is a method for modifying general-purpose pre-
trained word embeddings in such a way that domain-specific
word combinations are brought closer in the vector space. Gen-
eral patterns of punctuation encountered in corpora which were
used to train GloVe embeddings are visibly different from punc-
tuation patterns characteristic of spontaneous conversations.
On the other hand, GloVe embeddings have been trained on
very large corpora and they capture impressive amount of gen-
eral knowledge. Our motivation for using Mittens is to syn-
thesize general knowledge present in the pre-trained GloVe
embeddings with domain-specific punctuation data from the
Fisher corpus. We compare our approach with two state-of-the-
art solutions (a bi-directional LSTM model and a CNN with
pre-trained embeddings), showing significant improvements in
punctuation prediction accuracy.

2. Related work
The simplest form of punctuation prediction is the discovery of
sentence-like unit boundaries, where the problem is the binary
classification (with ”period” and ”space” classes). Historically,
many different techniques have been tried, for instance, Word
Confusion Matrices [5], Maximum Entropy Models [6], Con-
ditional Random Fields [7], Hidden Markov Models [8], and
mixtures of probability models [9]. Features used to detect sen-
tence boundaries included both linguistic information (n-gram
language models, turn markers, part of speech annotations) [10]
and prosodic features [11, 12, 13].

The advent of modern deep neural networks introduced un-
precedented advancements in punctuation prediction. Recur-
rent neural networks quickly surpassed previous state-of-the-art
models. Apart from incorporating word embeddings into punc-
tuation prediction [14], these models initially employed LSTM
architectures to predict punctuation marks using longer con-
texts [15, 16]. More recently, simpler architectures have proven
to be sufficiently robust. Character-level convolutional neural
networks (CNNs) can restore punctuation marks efficiently and
these models do not suffer from out-of-vocabulary tokens or
long inference times. At the same time, CNNs struggle to catch
longer contexts necessary to restore question marks [17]. In
the last two years, transformer-based models have been gain-
ing popularity for both general punctuation prediction [18] and
more specific tasks, such as question prediction [19] or disflu-
ency removal [20]. The popularity of transformer-based models
can be easily explained by the usefulness of the mechanism of
attention in punctuation prediction [16, 21]. Another area of ac-
tive research is the reframing of the punctuation prediction task
in terms of machine translation. These works are mainly driven
by real-time translation services [22, 23, 24].

We should stress that most of the previous works focused
on punctuation prediction for speech, not for conversations,
which makes the results incomparable with our case. Mo-
dels are usually trained on audio recordings with already avail-
able high-quality transcriptions – these are often examples of
scripted speech, for instance, TED talk transcripts or transcripts

of speeches in the European Parliament. Golden standard con-
versational transcripts are, as we have already mentioned, very
expensive to produce and only a handful of such datasets exists.

3. Methods
3.1. Data

Our primary training data is the Fisher corpus [25] due to its
adequately punctuated transcripts. The Fisher corpus creation
protocol relied upon a vast number of participants, each making
a few short calls. Typically, the speakers would not know each
other personally, which maximized inter-speaker variation and
vocabulary breadth, although it also increased the formality of
speech. The goal was to provide a representative distribution of
subjects across a variety of demographic categories, including
gender, age, dialect region, and English fluency. Punctuation
classes in the Fisher corpus are highly unbalanced (see Table 1),
which is typical for conversational speech. Hence, the Fisher
corpus is a proper training and evaluation dataset for the punc-
tuation prediction in the ASR transcripts.

Table 1: The distribution of punctuation classes in the Fisher
corpus.

Class Count Percentage

ε (blank) 1 429 905 79.1%
, 208 289 11.5%
. 148 624 8.2%
? 22 182 1.2%

To fit the Fisher corpus into our model definition, we need
to combine information from the time-annotated and punctu-
ated transcripts. The first step is computing the forced align-
ment of the time-annotated transcripts to obtain word-level in-
formation about starting times and durations of words. For that
purpose, we use the Kaldi ASR toolkit [26] with an LSTM-
TDNN acoustic model trained with lattice-free Maximum Mu-
tual Information (MMI) criterion [27]. In order to minimize the
differences between the two transcript versions, we edited the
Fisher corpus preparation script not to exclude single-word ut-
terances and the text in parentheses. We retained blanks (no
punctuation), periods, commas, and question marks. Other
punctuation classes (e.g., exclamation marks or ellipses) were
converted to blanks due to their low frequency. Finally, we
aligned the time-annotated transcript with the punctuated tran-
script using the Needleman-Wunsch algorithm [28].

3.2. Features

We represent the conversation C, as a chronologically or-
dered sequence C = [w1, w2, . . . , wn] of words wi =
〈ti, ci, si, di, pi〉, where: ti is the textual representation of the
word wi; the binary feature ci ∈ {A,B} represents the con-
versation side uttering the word wi; the real number si rep-
resents the time offset at which the word wi started; the real
number di represents the duration of the word wi; and pi is the
punctuation mark which appears after the word wi. The use
of mixed conversation sides yields to efficient representation of
interjections, interruptions, overlap, and simultaneous speech.
The punctuation marks are only known at the training time and
are being predicted during inference. We treat the punctuation
prediction problem as a sequence tagging task.
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We use three types of features in our models. First and
foremost, we use static word embeddings. We choose 300-
dimensional pre-trained GloVe [29] vectors which are being
retrofitted (see Section 3). Next, we use the interval (offset)
between the start of the current word and the end of the previ-
ous word, and the duration of the present word. We standardize
both of these features w.r.t. other words uttered by the same
speaker in the same conversation. As a result, the pauses are
not modelled explicitly as word tokens, but they are inferred by
the model based on word timings (offsets and durations).

3.3. GloVe retrofitting with Mittens

Word embeddings have become a widely used transfer learning
approach for language processing. While different strategies for
training the embeddings exist, the general premise is to encode
the probability that a word will occur in the context of other
words using dense vectors. These probabilities are estimated
within large scale corpora, such as Wikipedia text, product re-
views, or social media. In this work, we use pre-trained GloVe
embeddings trained on the Common Crawl dataset consisting
of 2.6 billion textual documents scraped from the Web. This
general written text is a great resource to capture large-scale
relations between words and their contexts. It is problematic,
however, that the general language model trained on such cor-
pus is not well aligned with the domain-specific tasks.

GloVe trains word representations in such a way that, for a
pair of words wi and wj , the dot product of their embeddings,
ŵi · ŵj , approximates the log-probability of the co-occurrence
of these words in the training corpus. Let V denote the available
vocabulary and let cij denote the co-occurrence of wordswi and
wj . The original objective function of GloVe is:

J =
∑

wi,wj∈V

f(cij)(ŵ
T
i ŵj + bi + bj − log cij)

2

where bi and bj are the bias terms which represent the fre-
quency of wi and wj in the training corpus, respectively. Func-
tion f(cij) attenuates the impact of infrequent word pairs, at the
same time increasing the impact of frequent word pairs.

In order to tackle the problem of language models in health-
care data, Dingwall and Potts [4] devised a retrofitting model for
static embeddings. The authors reformulate the task of training
GloVe embeddings in a matrix form and they propose the ex-
tension of the objective function to take into account domain-
specific data. Given the domain-specific vocabulary D, the
authors propose to retrofit the original embeddings by adding
the square distance penalty against the new vector d̂i for all
the words di ∈ D. The weight µ can be used to control the
retrofitting impact. The new objective function JMittens becomes:

JMittens = J + µ
∑
di∈D

‖ŵi − d̂i‖2.

In other words, the new objective function exerts two pres-
sures at the same time, by optimizing the original GloVe ob-
jective of moving word representations in the direction of the
log probabilities of word-pair occurrences (left term), and by
imposing a penalty whenever domain-specific word representa-
tion strays from the original embedding (right term).

In our case, the punctuation in conversational transcripts is
substantially different from the punctuation found in the Com-
mon Crawl corpus. Additionally, transcripts suffer from ASR
errors, where certain homophone or oronym sequences can be

put in place of the correct transcription. However, if these se-
quences are short (1-2 words), we hypothesize that they can be
corrected using the retrofitting, as the ASR errors should hap-
pen in the same contexts as correct words. If our hypothesis is
correct, it will allow us to overcome the problem of the absence
of quality embeddings trained on the domain-specific corpora.

4. Experiments
4.1. Models

All our models share the same convolutional neural network
(CNN) architecture. Each model uses several layers of 1D con-
volutions which can be interpreted as fully-connected layers
processing the input in small windows. Each layer is followed
by a SELU activation [30], which yielded a small improvement
over batch normalization [31] with ReLU [32]. We have experi-
mented with many combinations of different numbers of layers,
filter sizes, and other hyper-parameters. The best and most sta-
ble results have been achieved with six 1D convolutional layers
with the filter size of 128 and zero padding. We use kernel sizes
equal to 3 for all layers but the last one, where the kernel size
is equal to 20. Note that these kernels could mix words from
both sides of the conversation. All hidden layers use the dila-
tion rate equal to 2. We have also experimented with model
regularization. Firstly, we have added 0.5 dropout before the
softmax layer. Secondly, we have used the weight decay (l2
with 0.001 weight) for the softmax layer. We have added the
Gaussian noise with σ = 0.1 before the last softmax activation
and SeLU activations. Finally, we have used SeLU activations
that constrain the weights to a N(0, 1) distribution. The final
layer of our model is the fully-connected layer with softmax ac-
tivation. It is applied separately at each time step to retrieve
punctuation prediction for a given word.

4.2. Training

The models are implemented in Keras [33] with Tensorflow [34]
back-end. During the training, the weights are updated using the
Adam optimizer [35]. We use categorical cross-entropy as the
loss function. We reduce (by the factor of 0.5) the learning rate
(the minimum learning rate is set to 1e−5) with the patience
set to 3 epochs. We use the batch size of 256, and each sample
is 200 words long. The Fisher corpus is divided into training,
validation, and test sets in proportions 80:10:10. We had to re-
sort to a non-standard split of the Fisher corpus because we are
working on a subset of Fisher conversations where the transcript
contains punctuation marks.

5. Results
We compare three variants of CNN-based models with CNN
and BiLSTM baselines [36]. The BiLSTM model consists of 4
BiLSTM layers with 128 weights in each direction. The CNN
model has 6 layers of 1D convolutions, followed by SeLU acti-
vations. Convolutional layers use 128 character long filters and
the dilation rate of 2. The context is set to 3 words, with the
exception of the last layer which uses the context of 20 words.
Both models have a fully connected last layer, followed by 0.50
dropout layer and a soft-max layer. Weight decay of 0.001 is
applied to the soft-max layer. The inputs, the time feature, and
the soft-max activation are distorted with Gaussian noise (0.1
standard deviation). Each model is evaluated using precision,
recall, and F1 score for each punctuation class separately. The
results are presented in Table 2.
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5.1. Model comparison

Table 2: The per-class precision, recall, and F1-score (in %)
achieved by the compared models on the pre-trained GloVe em-
beddings with additional retrofitting using Mittens.

Model Class Precision Recall F1

CNN-baseline

ε 92.7 95.8 94.2
. 65.5 58.7 61.9
? 67.5 49.0 56.8
, 66.6 55.1 60.3

BiLSTM-baseline

ε 93.5 94.7 94.1
. 67.9 66.7 67.3
? 64.7 54.6 59.2
, 68.2 64.1 66.1

CNN-50k

ε 92.6 95.5 94.0
. 70.2 65.0 67.5
? 70.2 51.7 59.5
, 69.7 60.8 65.0

CNN-50k-mittens

ε 93.3 95.3 94.3
. 70.7 68.7 69.7
? 72.8 53.7 61.8
, 69.3 62.4 65.7

CNN-100k-mittens

ε 93.1 95.6 94.3
. 71.8 67.7 69.7
? 71.2 55.2 62.2
, 69.9 61.9 65.7

As our baseline we choose the convolutional neural network
and standard pre-trained GloVe embeddings for 50 000 most
frequent words in GloVe training data. This is a strong base-
line which has proven to be a viable solution for a production-
ready, real-time system [36]. Next, we constrain the selection of
the 50 000 words to those which appear in the ASR vocabulary
(CNN-50k model). This model language covers words that ap-
pear in the ASR vocabulary twice as frequently as the baseline
model, and it achieves approx. 60% coverage of the vocabulary.
We observe the improvement of both precision and recall across
all punctuation classes. The final model, with embeddings cov-
ering almost the entire ASR vocabulary (approximately 20%
of the ASR vocabulary is missing from GloVe), outperforms
the baseline with respect to all three considered metrics while
not imposing significantly increased resource requirements or
incurring computational costs. Finally, we compare our CNN-
based model with the BiLSTM model based on the GloVe em-
beddings. Our model outperforms this baseline with regards
to precision and recall for all punctuation classes, except full
stops. The additional advantage of using a CNN-based model
in the production environment is a more straightforward paral-
lelization compared to the BiLSTM architecture.

5.2. Confusion matrix analysis

Table 3 presents the comparison of the confusion matrices for
the CNN-baseline and the CNN-100k-mittens models. The
latter model improves the accuracy of all three punctuation
classes, with the most pronounced improvement for the ”pe-
riod” class (9% absolute improvement). The improvement for
”question mark” and ”comma” classes is 6.2% and 6.8%, re-
spectively. The improvements stem mostly from the fact that the
CNN-100k-mittens predicts punctuation marks missed by the

baseline model. In other words, our model inserts punctuation
marks in places where the baseline model predicts blanks.

Table 3: Confusion matrix comparison for the CNN-baseline
and CNN-100k-mittens models.

CNN-baseline
ε . ? ,

A
ct

ua
l ε 95.8 1.4 0.2 2.6

. 32.2 58.7 1.5 7.6
? 23.7 21.0 49.0 6.3
, 37.8 6.5 0.6 55.0

CNN-100k-mittens
ε . ? ,

95.6 1.1 0.1 2.8
21.2 67.7 1.5 9.6
19.9 18.4 55.2 6.4
31.1 6.6 0.4 61.9

5.3. GloVe similarity analysis

To see how the retrofitting of word embeddings moves homo-
phones and oronyms closer in the embedded space, we compute
the cosine similarity between selected pairs of confusing utter-
ances in the original and the retrofitted space. As can be seen in
Table 4, the vectors are much closer in the retrofitted space than
in the original GloVe space.

Table 4: Similarity between homophones/oronyms in the origi-
nal GloVe space and in the retrofitted space.

Homophone/Oronym Cosine similarity
original retrofitted

I have to cancel 0.74 0.91I have to cancer

by 0.16 0.4buy

go to the court 0.69 0.78got the card

thank you 0.84 0.9think you

6. Conclusions
Punctuation prediction is an important topic for improving the
readability and the segmentation of audio transcripts produced
by ASR. However, ASR introduces inherent errors in word
recognition and a significant divergence of punctuation mark
distribution due to the dynamics of spontaneous speech. These
phenomena limit the usefulness of word embeddings, since
most of the static word embeddings are trained on the correctly
segmented sentences from written text.

We have hypothesized that aligning language models
present in pre-trained word embeddings with the word co-
occurrence structure visible in transcribed calls would allow us
to overcome some of the challenges of ASR and to improve
the quality of punctuation prediction. We have used a recently
published method – Mittens – to retrofit the GloVe embeddings
with call transcripts obtained from ASR. Retrofitted embed-
dings yield an consistent improvement of 6%-9% over the origi-
nal GloVe embeddings for all punctuation classes. Furthermore,
the retrofitted embeddings allow us to outperform the BiLSTM
model with a faster CNN-100k-mittens model. This is a very
important practical result, as CNN-based models are much more
suitable for the deployment in production environments due to
the inference time constraints.
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