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Abstract
A recent task posed by the Zerospeech challenge is the
unsupervised learning of the basic acoustic units that exist in an
unknown language. Previously, we introduced recurrent sparse
autoencoders fine-tuned with corresponding speech segments
obtained by unsupervised term discovery. There, the clustering
was obtained on the intermediate layerwhere the nodes represent
the acoustic unit assignments. In this paper, we extend this
system by incorporating vector quantization and an adaptation
of the winner-take-all networks. This way, symbol continuity
could be enforced by excitatory and inhibitory weights along the
temporal axis. Furthermore, in this work, we utilized the speaker
information in a speaker adversarial training on the encoder. The
ABX discriminability and the low bitrate results of our proposed
approach on the Zerospeech 2020 challenge demonstrate the
effect of the enhanced continuity of the encoding brought by
the temporal-awareness and sparsity techniques proposed in this
work.
Index Terms: sparse recurrent autoencoder, correspondence
autoencoder, winner-take-all nets, speaker adversarial training,
vector quantization

1. Introduction
Existing speech technology heavily relies on annotated corpora.
However, such corpora don’t exist for many languages in
the world. To address this problem, zero resource speech
processing focuses on unsupervised methods to create linguistic
and acoustic models for the low-resource languages [1]. Such
systems are aimed to be trained on small amount of unlabeled
data and independent of the language so that they are adaptable
to many others.

Zerospeech Challenge provides a platform to test various
zero-resource systems on the same task, thus creating valuable
literature on the field. To continue this mission, Zerospeech
Challenge 2019 task tackles the problem of developing a speech
synthesis system without any written text data [2]. The task is
specifically interesting because we know that infants are able to
produce speech without being exposed to any annotated data.
The problem can be broken into two seemingly independent
tasks: discovering speaker independent discrete acoustic units
and producing speech in the voice of target speakers by using
acoustic units. In this paper, we focused on the acoustic unit
discovery task of the challenge.

Several unsupervised methods have been proposed to
discover acoustic units in the recent past. One prevalent
approach to the problem is to use Dirichlet process Gaussian
mixture model - Hidden Markov Model (DPGMM-HMM) [3,
4], or DPGMM [5, 6]. Another approach is to utilize
autoencoders [7, 8] or Siamese-style neural networks trained
with unsupervised spoken term discovery (STD) labels [9, 10].

Following the literature, most of the methods proposed
for acoustic unit discovery in Zerospeech 2019 Challenge
were based on the Bayesian non-parametric approach with
DPGMM [11] or HMM-GMM [12] and neural network models
with autoencoder architecture [13, 14, 15]. DPGMM structure
is used to generate pseudo-labels for supervised deep neural
network (DNN) training [11] whereas HMM-GMM framework
is employed to discover acoustic unit representations from
clusters of CVC segments in another work [12]. Autoencoder
models are trained to obtain acoustic unit representations in the
latent layer [13, 14, 15] or to reconstruct speaker-independent
MFCC features before unit discovery [11]. Since the
challenge requires discrete representation of the acoustic
units, vector-quantized variational autoencoders (VQ-VAE)
were utilized due to their ability to produce discrete latent
variables [14, 15].

The methodology proposed in this paper is an extension
of the correspondence recurrent sparse autoencoder (CoRSA)
architecture which was introduced in [13] and has recently
been applied to a similar task of discovering visual units in
sign language videos [16]. In CoRSA, corresponding pairs of
acoustically similar sequences are used to fine-tune a recurrent
sparse autoencoder, which is similar to the methodology
of [17]. The acoustic units to be discovered are obtained
on the intermediate softmax layer. In this paper, we use an
adaptation of the winner-take-all (WTA) networks that are more
extensively used in computational models of the brain [18].
WTA networks are an example of competitive learning and
generally used in recurrent form, where only one (particularly the
strongest) of the nodes keep activating and others zero out. This
feature makes them useful for distributed decision-making [19]
applications. We adapt the WTA methodology to include a
temporal aspect in this paper, and use it after the softmax
layer of CoRSA. We apply vector quantization (VQ) on the
output of one forward run of WTA, just to omit its recurrent
application. In addition to WTA and VQ, which did not exist
in [13], in this paper, we also incorporate speaker adversarial
training (SAT) to the CoRSA model. The enforced continuity
and unit consistency brought by WTA and SAT resulted in a
significantly reduced bitrates. The proposed system obtained
the lowest bitrate among the Zerospeech 2020 groups, while
maintaining an ABX discriminability score outperforming the
baseline on both languages.

2. System Description
The system follows the autoencoder-based approach that has
been commonly adopted for the task of acoustic unit discovery.
The proposed method is an enhancement of CoRSA which
was previously proposed for the Zerospeech 2019 challenge.
We’ll briefly introduce the basic components of and the idea
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behind CoRSA, then present the extensions to it, brought by the
Zerospeech 2020 work in the following subsections.

2.1. Correspondence Recurrent Sparse Autoencoder

The proposed system is an autoencoder in which the underlying
acoustic units that constitute the training speech data is expected
to be obtained at the intermediate layer. The probability
distribution over the set of acoustic units is obtained at the
intermediate layer of the autoencoder as the output of a fully
connected layer with softmax. The sparsity of this layer
is ensured by maximizing the L2-norm of the layer while
minimizing the reconstruction loss. This method is referred
to as the recurrent sparse autoencoder (RSA), in [13] and in
this paper. The consistency of the activations of the appropriate
units on this layer is achieved by using pairs of acoustically
similar sequences, obtained by unsupervised term discovery, in
the reconstruction. These pairs of similar sequences, referred
to as the corresponding pairs, are aligned with dynamic time
warping (DTW). They are used as input-output pairs iteratively
to the autoencoder. This training method is referred to as
Correspondence RSA (CoRSA).

The encoder takes the speech frames x ∈ RD×T as input,
and feeds the clustering layer with the embedding h ∈ RH×T .
The encoder can be in any form, i.e. fully connected, recurrent
or convolutional. We used gated recurrent units for the encoder
and the decoder. The sparse posteriorgram representation
p ∈ [0, 1]K×T is obtained at the output of the clustering layer,
where K is the number of units. The reconstructed output x̂ is
then obtained via a decoder. In CoRSA training, the network is
fine-tuned with a lower learning rate, using corresponding pairs
x and x̃ as input and output pairs. The flowchart for the CoRSA
model, and the proposed model is given in Figure 1. In this
work, we extend the methodology of CoRSA with a temporal
adaptation of winner-take-all networks, vector quantization and
speaker adversarial training.

Figure 1: CoRSA (left) and the proposed system (right)

2.2. Winner-Take-All Network

The architecture and the training of CoRSA is very
similar to other correspondence autoencoder-based [7, 8] and
VQ-VAE-based [14, 15] systems. The main difference is that

the intermediate layer activations are treated as the probability
distribution of the acoustic units to be discovered. This is why
we refer to this layer as the clustering layer. The sparsity loss
of the RSA and CoRSA training reduces the entropy of this
distribution, enabling consistent frame-unit assignments, at the
risk of losing some of the K assignments completely. We take
advantage of this aspect of the CoRSAmethod, by incorporating
the winner-take-all (WTA) networks that are commonly used
in computational models of the brain [18]. In WTA, unit
activations are effected from inter-connected excitatory and
inhibitory neural activations. More specifically, pseudo-unit
activations on the clustering layer are fed to a WTA network
with K input and output neurons. Each input neuron ‘excites’
the corresponding output neuron with a positive weight, and
‘inhibits’ other output neurons with negative weights. The
idea is that eventually, the neuron with the maximum activation
remains. In this paper, we extend the application of the WTA
network to include temporal excitatory and inhibitory activations
as well, in order to enforce continuity of the activations.
Temporal adaptation of the WTA network is given in (1) and
demonstrated in Figure 2.

pt = softmax(encoder(xt))

p̃i
t = ReLU(αpi

t −
∑
j 6=i

βpj
t + γpi

t−1 −
∑
j 6=i

ψpj
t−1)

p̃t = softmax(p̃t)

(1)

Figure 2: Temporal WTA network.

In (1), the hyper-parameters α, γ ≥ 0 are excitatory and
β, ψ ≥ 0 are inhibitory weights. It should be noted that,
their relative power with respect to each other, rather than
actual values, is important for determining the non-zero unit
activation(s). Also, it can be seen from (1) that application of
this layer repeatedly will result in a one-hot vector, with only the
most probable unit activating, hence the name winner-take-all.
We did not, however, implement a recurrent WTA network,
instead, we quantized the output of the WTA network to the
nearest one-hot representation:

qi
t =

{
1, if i = arg max

j
p̃j
t

0, otherwise
(2)

The decoder, which is taken as a stack of time-distributed
dense and GRU layers, then uses the quantized unit estimations
q as input to generate the reconstructed sequence x̂. While
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training the encoder-decoder parameters, we use the sparsity
loss of the layer right before the decoder in addition to the
reconstruction loss, as proposed in [13]. For the CoRSA
training, corresponding pairs (x, x̃) are used as input-output
pairs. We align the corresponding pairs with theDTWalgorithm
to have the same duration over DTWpath (Φ). For RSA training,
the ground truth is the input itself, i.e. Φ(x̃t) = xt.

x̂t = decoder(qt)

LCoRSA =
∑

t∈1···T

||Φ(x̃t)− x̂t||2 − λ||qt||22 (3)

It is obvious that the L2-norm of q is constant, but adding
the negative of it to the total loss has the effect of enforcing the
continuity of the reconstruction, and therefore a reduced bitrate.
Since the input to the decoder is now discrete, and since speech
is slow varying, to maintain that continuity, each frame before
the decoder is enforced to have the same information as the
previous frame, i.e. have the same unit activated.

2.3. Speaker Adversarial Training

As stated before, the Zerospeech training is meant to
be unsupervised and the only information provided is the
segmentation of utterances with respect to different speakers.
In this work, we incorporate speaker adversarial training (SAT),
as well, to CoRSA scheme in order to make use of the speaker
information. The adversarial training approach adopted in this
work is similar to [20] and [21]. The output of the encoder
is directed to a discriminator that aims to identify the speaker
information. As the discriminator block, we used a multi layer
fully connected neural network followed by a softmax. The
discriminator criterion (Ldisc) is the cross entropy between the
speaker id labels and softmax(discriminator(encoder(x)). In
order for the encoder to be speaker independent, the gradient
is reversed between the encoder and the discriminator in the
back propagation. This operation is depicted with a gradient
reversal layer (GRL) on Figure 1. If we call the parameters of
the encoder and the discriminator θenc and θdisc, respectively,
speaker adversarial the update rules can be given as follows:

θdisc ← θdisc − η1∇θdiscLdisc

θenc ← θenc − η1
(
∇θencLCoRSA − η2∇θencLdisc

) (4)

In order to obtain the low bit-rate test embeddings, we
employ a median filter along time temporal axis, after the WTA
network, to avoid erroneous and unmeaningfully short state
assignments on the encoding, similar to [13]. We then quantize
the resulting embeddings to the nearest one-hot representation,
as shown in (2).

p̃i
t = median(p̃i

t−k:t+k) (5)

2.4. Implementation Details and Hyper-parameters

Themodels have been implementedwith PyTorch and the source
code has been made publicly available1. We used PLP features,
normalized with the decaying exponential weigth of 0.9 as
explained in [13]. For selecting the CoRSA pairs, we took
the cutting threshold of UTD to be 0.92 and took the sequences
that have a greater similarity score than this threshold. Both
the encoder and decoder are a stack of GRU models and linear
layers. The network is trained with Adam optimization [22].

1https://github.com/batuhan-gundogdu/corsa_wta/

We have observed that best results are obtained by training the
network with RSA for some number of epochs, then running
interleaving epochs of CoRSA and SAT. It should be noted that,
changing the input-output pairs in CoRSA, i.e. generating x
from Φ(x̃), as well as generating Φ(x̃) from x brings further
improvements. The other hyperparameters of the system are
given in Table 1.

Table 1: Hyperparameters of the work described in this paper

Parameter Value
D input dimensionality 16

H Hidden layer size 128

K Number of units 64

T sequence length 250 (RSA), 80 (CoRSA)
N batch size 1024 (RSA), 256 (CoRSA)
λ sparsity weight 1.0

η1 learning rate 0.0001 (RSA)
0.0005 (CoRSA)

η2 adversarial cost 1.0

α excitatory weight K − 1

β inhibitory weight 1.0

γ temporal excitatory weight K/2

ψ temporal inhibitory weight 0.0

k Median filter order 3

3. Experiments
Zerospeech 2020 challenge had 3 tracks, which are the repetition
of 2017 and 2019 challenges. The 2017 tracks were focused
on unsupervised term discovery and unit discovery. The 2019
track was defined as the TTS without T task, hence it is also
an unsupervised unit discovery task, but the compression of
the frame representations are also measured, along with the
synthesis using the discovered units. This work presents our
work submitted to Zerospeech 2020, for the 2019 task. In this
work, we focused on obtaining aminimum bitrate representation
possible without harming the ABX discrimination performance.

The ABX discriminability of the produced embeddings is
calculated via a DTW-based sequence comparison [23]. As a
part of the challenge, the synthesized wave files are evaluated
by the judges based on their intelligibility through mean opinion
scores (MOS). For the synthesis we used the baseline system
[24] and focused primarily on lowering bitrate and ABX error
simultaneously. The experiments are conducted on the two
languages provided in the challenge: English and the surprise
language, later revealed to be Standard Indonesian [25, 26].

3.1. Experimental Results

The English dataset was provided as the system development set
by the program. The ABX and bitrate results demonstrating
the several components of the proposed method are given
in Table 2. To begin with, we initially took the intuitive
benchmarks as baselines for comparison. The "no compression"
system demonstrates the ABX error when no compression and
clustering is applied. It is naturally feasible to obtain better
results than that without taking the bitrate into consideration,
yet this is the goal of the 2017 track challenge. The main
objective here is to reduce the ABX error along with the bitrate.
Applying k-means clustering (with K = 64 to be comparable

4848



with this work), and using the one-hot representation of the
nearest centroid for the test set, reduces the bitrate more than
86%, yielding an ABX still better than the topline, which uses
LVCSR system labels. It can be seen that both RSA and CoRSA
bring improvements over the provided baseline system, which
consists of an acoustic unit discovery system based on HMM
with Dirichlet process priors [3]. In each row of Table 2,
we present the contribution brought by each of the system
components (WTA, VQ, SAT) introduced in this paper as an
extension to CoRSA. The medFilt on the last system, which was
also the system submitted to Zerospeech, denotes the temporal
median filtering.

Table 2: English set results of the system components

Model ABX Bitrate
no compression (PLP features) 22.0 1216.3
k-means (on PLP features) 29.6 169.3
Zerospeech baseline [3] 35.6 72.0
RSA 32.1 58.4
CoRSA 31.5 58.1
CoRSA + WTA 30.3 44.2
CoRSA + WTA + VQ 29.2 44.7
CoRSA + WTA + VQ + SAT 29.4 38.5
CoRSA + WTA + VQ + SAT + medFilt 29.9 34.6
topline (LVCSR) 29.8 37.3

3.2. Comparison with other systems in Zerospeech

We submitted the system with the lowest bit-rate (CoRSA +
WTA+VQ+SAT+medFilt) to Zerospeech 2020. Our systems’
results along with other submissions to the challenge are
demonstrated on the bitrate-ABX plot given in Figures 3 and 4,
for English and the surprise language, respectively.
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CoRSA 2019
CoRSA 2020
Other Groups 2019
Other Groups 2020

Figure 3: ABX score vs bitrate in English

The performance of the proposed system exhibits an obvious
outlier behavior on both languages, as seen in Figures 3 and 4.
More drastically, in English, the proposed system lands itself
right next to the topline, outperforming the baseline, on
both ABX and bitrate measures. There is also significant
improvement in theABXwithout an increase in bitrate compared

to 2019 CoRSA system. This improvement is clearly brought
by the WTA, VQ and SAT additions to the system.
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Figure 4: ABX score vs bitrate in Surprise language

Our system gives ABX scores close to its performance in
English, with lower bitrate in surprise language. However,
other systems, including topline, performed better on surprise
language compared to English in terms of ABX and bitrate.
Even though our system achieved the lowest bitrate, ABX score
can be improved to obtain a system with higher discrimination
ability.

4. Discussion and Conclusion
This paper describes our Zerospeech 2020 submission system.
We primarily focused on the acoustic unit discovery task
while minimizing the bitrate. The improvements made on
to the CoRSA 2019 system include winner-take-all networks,
vector quantization and speaker adversarial training. The
experiments on the Zerospeech 2020 data show that the proposed
improvements reduced the ABX error more than 5% absolute
points without increasing the bitrate. We have shown that our
system stands out from the general trend of ABX - bitrate
relationship, achieving reasonably well ABX scores with very
small bitrate in English.
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