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Abstract
We present a novel approach of cyclic spectral modeling for

unsupervised discovery of speech units into voice conversion

with excitation network and waveform modeling. Specifically,

we propose two spectral modeling techniques: 1) cyclic vector-

quantized autoencoder (CycleVQVAE), and 2) cyclic varia-

tional autoencoder (CycleVAE). In CycleVQVAE, a discrete

latent space is used for the speech units, whereas, in Cycle-

VAE, a continuous latent space is used. The cyclic structure

is developed using the reconstruction flow and the cyclic re-

construction flow of spectral features, where the latter is ob-

tained by recycling the converted spectral features. This method

is used to obtain a possible speaker-independent latent space

because of marginalization on all possible speaker conversion

pairs during training. On the other hand, speaker-dependent

space is conditioned with a one-hot speaker-code. Excitation

modeling is developed in a separate manner for CycleVQVAE,

while it is in a joint manner for CycleVAE. To generate speech

waveform, WaveNet-based waveform modeling is used. The

proposed framework is entried for the ZeroSpeech Challenge

2020, and is capable of reaching a character error rate of 0.21,

a speaker similarity score of 3.91, a mean opinion score of 3.84
for the naturalness of the converted speech in the 2019 voice

conversion task.

Index Terms: unsupervised speech unit discovery, cyclic mod-

eling, spectral, voice conversion, excitation, WaveNet vocoder

1. Introduction

Recently, a lot of works have been carried out on the so-called

zero resource settings of speech processing [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13]. In a zero resource setting, the textual informa-

tion of the speech data is not provided, e.g., segmented annota-

tions, which is typical in a low resource language and, to a cer-

tain degree, in speech acquisition for infants. Notably, in 2015

[4, 5], 2017 [7], and 2019 [10], the Zero Resource Speech Chal-

lenge (ZSC) has been organized, where the objective is to per-

form the discovery of subword/wordlike speech units (speech

sounds representations) without any textual annotations, i.e., in

an unsupervised manner. Further, in ZSC 2019 [10], it is ex-

tended into a speech synthesis task to generate the same lin-

guistic contents as the input speech, but with a different voice

characteristic, i.e., voice conversion (VC) [14]. In this paper,

we present our system for the ZSC 2020 on the unsupervised

discovery of subword units into the VC pipeline of 2019 task.

A lot of works have been proposed for the unsupervised dis-

covery of subword units [3, 6, 8, 11, 12, 13]. These methods are

mainly evaluated in terms of ABX discriminability for triphones

with different centering phonemes [15, 16]. It is logical that the

ideal subword units have to be free as much as possible from

speaker-dependent characteristics (paralinguistic), e.g., prosody

or voice timbre. Further, in order to acquire reliable final prod-

uct of a speech synthesis pipeline, it might be useful to develop

these kind of frameworks in an end-to-end manner.

To obtain such capabilities, in this work, we propose to use

a system that is based on a spectral modeling method for VC.

Specifically, the spectral modeling is based on variational au-

toencoder (VAE) [17] framework, where a prospective speaker-

independent latent space, used for the subword units, is regu-

larized with a chosen prior distribution. The speaker-dependent

space, however, is defined by the use of a one-hot speaker code.

The objective includes the spectral reconstruction term and the

regularization term. In a conventional VAE-based VC [18],

though, the performance is still limited due to the minimal treat-

ment for the latent space to be disentangled from the speaker-

dependent traits.

In this paper, to possibly extract a cleaner latent space in

an unsupervised manner, we propose to use a cyclic framework

of VAE (CycleVAE) [19] to disentangle the speaker-dependent

traits by means of marginalization of all possible speaker con-

version pairs. This can be achieved by sampling a target speaker

from the dataset at each cycle, generate the corresponding con-

verted spectra, and recycle the converted spectra to obtain the

cyclic reconstructed spectra of the input speaker. In addition,

inspired by [20], we also extract the speaker-posterior, together

with the latent-posterior, from the encoder. Subsequently, to

obtain a lower bitrate value for subword units, as one of the

objective in 2019 task of ZSC 2020, we also propose to use a

discrete latent space, which is an extension of the conventional

vector-quantized VAE (VQVAE) [21, 11, 12, 13] into a cyclic

framework of VQVAE (CycleVQVAE).

Finally, to provide the capability of speech waveform

generation using the discovered subword units, we utilize

additional excitation and waveform modelings. For the

CycleVQVAE-based spectral model, the excitation module is

developed in a separate manner, whereas for the CycleVAE-

based model, it is developed in a joint manner through an ad-

hoc modification of the variational lower bound. On the other

hand, WaveNet vocoder [22, 23] is used as the framework for

the waveform modeling. The results of ZSC 2020 demonstrate

that the proposed framework is capable of reaching highly com-

petitive scores in the VC of 2019 task.

2. Spectral Modeling based on Variational
Autoencoder

Let x = [x�
1 , . . . ,x

�
t , . . . ,x

�
T ]

� be the sequence of

speech feature vectors, where xt = [e
(x)�

t , s
(x)�

t ]�.

The De-th dimensional excitation and the Ds-th dimen-
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sional spectral feature vectors are respectively denoted

as e
(x)�

t = [e
(x)
t (1), . . . , e

(x)
t (De)]

� and s
(x)�

t =

[s
(x)
t (1), . . . , s

(x)
t (Ds)]

� at time t.
In this work, we assume that the probability density func-

tion (pdf) of the speech feature vector xt at time t is composed

as p(xt) ∝ p(s
(x)
t )p(e

(x)
t ). Hence, the term in objective func-

tion p(x) =
∏T

t=1 p(xt) can be written as follows:

p(xt) =

∫ ∑

c∈C

p(s
(x)
t |zt, c)p(e

(x)
t )p(c|xt)p(zt)dzt

�

∫
p(s

(x)
t |zt, c

(x))p(c(x)|xt)p(zt)dzt, (1)

where zt denote the latent feature vector at time t. c denotes

a time-invariant one-hot speaker-code, and c(x) is the speaker-

code for the input speech features xt. C is the set of speaker-

codes for all available speakers. The excitation term p(e
(x)
t ) is

assumed to be constant due to only spectral modeling,

In a variational autoencoder (VAE) [17], an inference net-

work is used to model the approximate of true posterior of the

latent features p(zt|xt) =
p(xt,zt)
p(xt)

as follows:

log pθ(xt) � L(θ,φ;xt)+DKL(qφ(zt|xt)||pθ(zt|xt)), (2)

where the variational lower bound is given by

L(θ,φ;xt)=Eqφ(zt|xt)[log pθ(s
(x)
t |zt, c

(x)) + log pφ(c
(x)|xt)

−DKL(qφ(zt|xt)||pθ(zt)). (3)

The sets of inference parameters (encoder) and generative pa-

rameters (decoder) are denoted as φ and θ, respectively.

3. Cyclic Spectral Modeling for
Unsupervised Unit Discovery

3.1. CycleVAE-based spectral modeling

In CycleVAE-based spectral modeling, the variational lower

bound is defined as follows:

L(θ,φ;xt)=

N∑

n=1

Eqφ(zn,t|xn,t)[log pθ(s
(x)
n,t = s

(x)
t |zn,t, c

(x))]

+ Eqφ(zn,t|yn,t)
[log pθ(s

(x|y)
n,t = s

(x)
t |zn,t, c

(x))]

−DKL(qφ(zn,t|xn,t)||pθ(zt))−DKL(qφ(zn,t|yn,t)||pθ(zt))

+ log pφ(c
(x)
n,t = c

(x)|xn,t)+log pφ(c
(y)
n,t = c

(y)|yn,t), (4)

where

s
(x)
n,t = gθ(z

(x)
n,t, c

(x)); s
(x|y)
n,t = gθ(z

(y)
n,t, c

(x)), (5)

z
(x)
n,t = fφ(xn,t)

(μ) − fφ(xn,t)
(σ) � ε, (6)

z
(y)
n,t = fφ(yn,t)

(μ) − fφ(yn,t)
(σ) � ε, (7)

ε = sign(U) ln(1− 2|U |), s. t. U∼(−1/2, 1/2], (8)

xn,t = [e
(x)�

t , s
(x|y)�

n−1,t ]
�; s

(x|y)
0,t = s

(x)
t , (9)

yn,t = [e
(y|x)�

t , s
(y|x)�

n,t ]�; s
(y|x)
n,t = gθ(z

(x)
n,t, c

(y)), (10)

c
(x)
n,t = fφ(xn,t)

(c); c
(y)
n,t = fφ(yn,t)

(c), (11)

c
(y) ∈ C \ c(x), (12)

Figure 1: Cyclic spectral modeling based on variational au-

toencoder (VAE) for unsupervised unit discovery and spectral

features (feat.) conversion (conv.) with discrete (disc.), i.e., Cy-

cleVQVAE, or continous (cont.), i.e., CycleVAE, latent space.

Target speaker (spk) is sampled from the dataset at each cycle.

pθ(zt) = L(0,1), and yn,t denotes the converted speech fea-

tures at the n-th cycle of time t. e
(y|x)
t denotes the excitation

feature vector of the converted speaker c(y) at time t, such as

linear-transformed fundamental frequency (F0) from that of the

input speaker c(x). The number of cycles is denoted as N . A

signed function is denoted as sign(·). L(0,1) denotes the stan-

dard Laplacian distribution. The encoder and decoder network

functions are denoted as fφ(·) and gθ(·), respectively. The out-

put of the encoder network is consisted of the location μ and

the scale σ parameters of the approximate latent-posterior qφ(·)
and the logits c of the speaker-posterior pφ(·).

At each n-th cycle, the converted speaker c(y) is randomly

sampled from the set of speakers C excluding the input speaker

c(x). As the number of optimization steps increases, it con-

verges towards marginalization of all possible speaker conver-

sion pairs. Given input speech feature vector x1,t, the subword

units are assumed to be represented by the latent feature vector

z
(x)
1,t at time t. The flow of CycleVAE is illustrated in Fig. 1

using the continuous part (Cont.) of latent space configuration.

3.2. CycleVQVAE-based spectral modeling

In this paper, we introduce cyclic vector-quantized variational

autoencoder (CycleVQVAE)-based spectral modeling, which is

depicted using the discrete part (Disc.) of latent space configu-

ration in Fig. 1. Following Eq. (4), the variational lower bound

is defined as follows:

L(θ,φ,ϕ;xt)=
N∑

n=1

log pθ(s
(x)
n,t = s

(x)
t |z

(x)
n,t, c

(x))

+ log pθ(s
(x|y)
n,t = s

(x)
t |z

(y)
n,t, c

(x))

+ log pφ(c
(x)
n,t = c

(x)|xn,t)+log pφ(c
(y)
n,t = c

(y)|yn,t),

−D(qφ(zn,t|xn,t), z
(x)
n,t)−D(qφ(zn,t|yn,t), z

(y)
n,t), (13)

where

z
(x)
n,t = min

vϕ∈V ϕ

||qφ(zn,t|xn,t)− vϕ||, (14)

z
(y)
n,t = min

vϕ∈V ϕ

||qφ(zn,t|yn,t)− vϕ||, (15)

qφ(zn,t|xn,t) = fφ(xn,t)
(z), (16)

qφ(zn,t|yn,t) = fφ(yn,t)
(z), (17)

|| · || denotes a vector norm, D(·, ·) denotes a specified distance

function, and V ϕ denotes the set of VQ codebook parameters.
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In order to bypass the min function, straight-through esti-

mator [21] is used at each n-th cycle to allowing backpropaga-

tion path from the decoder gθ(·) into the encoder fφ(·). On

the other hand, the VQ codebook Vϕ is optimized only with the

distance term D(qφ(z1,t|x1,t), z
(x)
1,t ) and the conditional pdf

p(s
(x)
1,t |z

(x)
1,t , c

(x)) of the 1st cycle.

4. Excitation and Waveform Modeling for
Speech Generation

To accomodate the voice conversion task in the ZSC 2020,

we present a novel approach to allow excitation and waveform

modeling, where the pipeline is depicted in Fig. 2.

4.1. Excitation modeling for CycleVQVAE and CycleVAE

For the CycleVQVAE-based spectral modeling, we use a sep-

arate excitation network to estimate the excitation feature vec-

tor e
(x)
t of speaker c(x) given the spectral feature vector s

(x)
t

at time t. Hence, the term in objective function p(e|s) =∏T

t=1 p(et|st) can be denoted as follows:

p(et|st) =
∑

c(x)∈C

pϑ(e
(x)
t |s

(x)
t , c(x))p(c(x)), (18)

where ϑ denotes the set of excitation network parameters.

p(c(x)) = 1 for s
(x)
t and 0 otherwise.

On the other hand, in the CycleVAE-based spectral model-

ing, we use an ad-hoc modification of variational lower bound

L(θ,φ;xt) in Eq.(4) to perform a joint optimization as follows:

L(θ,φ,ϑ;xt) = L(θ,φ;xt) + log pϑ(e
(x)
1,t = e

(x)
t |s

(x)
1,t , c

(x))

+ log pϑ(e
(y|x)
1,t = e

(y|x)
t |s

(y|x)
1,t , c(y)). (19)

4.2. Waveform modeling with WaveNet vocoder

In order to generate speech waveform, we propose to use

WaveNet-based waveform modeling [22, 23], where the pdf of

waveform samples w = [w1, . . . , wT ]
� is given by

p(w) =

T∏

t=1

pψ(wt|wt−p,xt). (20)

wt−p denotes the p past waveform samples, and xt denotes

the conditioning speech features, e.g., spectral and excitation

feature vectors, at time t.
Furthermore, to reduce the mismatches between natural

speech features xt used in the training, and estimated speech

features, e.g., converted spectral features s
(y|x)
1,t , a WaveNet

fine-tuning procedure is introduced [24, 25]. Following Eq.(20),

the objective function in the fine-tuning is as follows:

p(w|ψ̂) =
T∏

t=1

p(ψ|ψ̂)(wt|wt−p, x̂t), (21)

where x̂t = [s
(x)�

1,t , e
(x)�

t ]�, and ψ̂ denotes the parameters set

of a pretrained WaveNet.

5. Experimental Evaluation
5.1. Experimental conditions

We used WORLD [26, 27] package to parameterize the speech

signal into spectral and excitation features. Specifically, 49-

th dimensional mel-cepstrum parameters [28] including 0-th

Figure 2: Flow of the proposed frameworks to perform discov-

ery of subword units using the latent space representations of

CycleVAE/CycleVQVAE spectral model, and into voice conver-

sion with additional excitation module and WaveNet vocoder.

power were used as the spectral envelope features. On the other

hand, log-continuous F0 values, including unvoiced/voiced

(U/V) binary decisions, and 1-dimensional code-aperiodicity,

were used as the excitation features. The sampling rate of the

speech signal was 16000 Hz. The frame shift was set to 10 ms.

The number of FFT points for analysis was 1024. The fre-

quency warping coefficient was set to 0.455.

The dataset of the 2019-task [10] in ZSC 2020 1consisted

of English and Surprise [29, 30] languages, where each has a

subset of voice dataset and unit dataset. The voice dataset of

English language consisted of 1 male and 1 female of about

4.6 hours (hr) in total, whereas that of the Surprise language

consisted of 1 female of about 1.5 hr. The unit dataset of

English language consisted of another 100 speakers of about

15.6 hr in total, whereas that of the Surprise language consisted

of another 112 speakers of about 15 hr in total. The test dataset

of each language consisted of speech data from speakers that

are outisde of the speakers set C of the training data.

Each of the CycleVQVAE- and CycleVAE-based spectral

models 2, described in Section 3, were developed using the

speech data of all 215 speakers in the 2019-task. CycleVAE

adopted the joint excitation modeling with objective function

given in Eq. (19). CycleVQVAE adopted the separate excita-

tion modeling with objective in Eq. (18), where the excitation

module was trained using only the speech data of the 3 target

speakers in the 2019-task. Note that we also included recon-

structed s
(x)
1,t and cyclic reconstructed s

(x|y)
1,t spectral features

to develop the excitation module of CycleVQVAE.

The network architectures for CycleVQVAE and Cycle-

VAE models were based on [19]. The number of cycles was set

to 2 and 3 for CycleVQVAE and CycleVAE, respectively. The

number of latent dimensions was set to 50 and 32 for CycleVQ-

VAE and CycleVAE, respectively. The number of centroids was

set to 50 for CycleVQVAE. Adam [31] was used to optimize

CycleVQVAE, while rectified Adam [32] was used to optimize

CycleVAE. The learning rate was set to 0.0001. Weight nor-

malization [33] was used for convolution layers in CycleVAE.

As input excitation features for CycleVAE, we used additional

U/V decisions for code-aperiodicity, and transformed the code-

aperiodicity values into their continuous negative-log.

For the waveform model, we used a shallow WaveNet

vocoder using discrete output (softmax), which was exactly the

same as in [34]. A multispeaker WaveNet vocoder [35] was

trained using the 3 target speakers. Fine-tuning using recon-

structed spectral features s
(x)
1,t [24, 25], as given in Eq.(21), was

1https://zerospeech.com/2020/results
2An implementation package has been made available at:

https://github.com/patrickltobing/cyclevae-vc-neuralvoco
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Table 1: Results on mel-cepstral distortion (MCD) between con-

verted and target spectral features, and on root-mean-square

error (RMSE) and cosine similarity (Cos-Sim) between latent

features of source and target utterances for CycleVQVAE spec-

tral modeling on English test dataset of 2019-task in ZSC 2020.

Dynamic time warping was performed on only speech frames.

The number of latent-dimensions (Lat) and centroids (Ctr) were

set the same, i.e., 32 or 50. The number of cycles (Cyc) were set

to 0, 1, or 2. The target speaker was male (M) or female (F).

Lat-Ctr-Cyc
MCD [dB] RMSE Cos-Sim

M F M F M F

32-32-0 6.46 6.15 0.29 0.26 0.68 0.73

32-32-1 6.19 5.98 0.20 0.18 0.82 0.85

32-32-2 6.01 5.87 0.18 0.16 0.89 0.91

50-50-2 5.99 5.89 0.08 0.07 0.92 0.93

performed on only CycleVQVAE for each target speaker.

5.2. Experimental results

5.2.1. Internal evaluation results

In our internal evaluations, we performed objective measure-

ments on the English test dataset to confirm the CycleVQVAE

framework. The English test dataset contained 193 utterances

to be converted into either of the 2 target English speakers.

Given that the parallel target utterances were also provided,

we could compute the feature distance using dynamic-time-

warping (DTW) between the source/converted and the target

utterances. For CycleVAE, we based its hyperparameters on

the previous work [19].

In the first internal evaluation, we measured mel-cepstral

distortion (MCD) between the converted spectra and the target

spectra in the English test. Secondly, we measured the root-

mean-square error (RMSE) and cosine-similarity [36] between

the VQ latent features estimated from the source utterances and

that from the target utterances. The results of spectral distortion

and latent features measurement, using 0, 1, or 2 cycles, with 32
or 50 latent-dimensions/centroids, are shown in Table 1. The re-

sults show that the use of 2 cycles could provide better accuracy

of spectral conversion. Moreover, it can also be observed that

marginalization over possible conversion pairs in training, i.e.,

by the use of cycles, could provide more similar latent spaces

for two same utterances between different speakers.

5.2.2. Official evaluation results

The official evaluation results from ZSC 2020 include objective

and subjective evaluations. The objective evaluation consisted

of ABX discriminability test, of discovered units, between tri-

phones with different centering phoneme, and of character error

rate (CER) for the synthesized speech. The subjective evalua-

tion consisted of mean opinion score (MOS) test for naturalness

of synthesized speech and a test of its similarity (Sim) to the ref-

erence target speaker. Additionaly, the bitrate values were also

computed with respect to the discovered subword units. Note

that for ABX and bitrate tests, the test datasets consisted of ad-

ditional audios, each having short durations, totaling in about

1.65 hr (13529 utterances) and 1.37 hr (10189 utterances) for

English and Surprise test sets, respectively. The number of syn-

thesized utterances for Surprise test set was 150.

The official evaluation results are shown in Table 2. It can

be observed that for Surprise set, CycleVAE yields better score

with 3.84 MOS, 0.21 CER, and 3.91 Sim. As for English set,

CycleVQVAE yields better score in MOS and Sim with val-

Table 2: Official evaluation results on mean opinion score

(MOS) test of naturalness, character error rate (CER), and

speaker similarity (Sim) of the synthesized (converted) speech

for English and Surprise test sets. Additional sets of audios

were used for ABX discriminability test between triphones with

different centering phoneme, and for bitrate calculation of the

discovered units. Systems include the topline and the baseline of

ZeroSpeech 2020, and our CycleVQVAE- and CycleVAE-based

spectral modeling for unit discovery, with their excitation and

waveform models for voice conversion.

Surprise MOS CER Sim ABX Bitrate

Topline 3.49 0.33 3.77 16.09 35.2

Baseline 2.23 0.67 3.26 27.46 74.55

CycleVQVAE 3.28 0.33 3.64 18.13 463.75

CycleVAE 3.84 0.21 3.91 24.42 1745.79

English MOS CER Sim ABX Bitrate

Topline 2.52 0.43 3.1 29.85 37.73

Baseline 2.14 0.77 2.98 35.63 71.98

CycleVQVAE 3.4 0.46 3.79 30.54 468.23

CycleVAE 3.31 0.31 3.16 36.29 1739.85

ues of 3.4 and 3.79, respectively, while CycleVAE yields better

CER with a value of 0.31. In terms of ABX score and bitrate,

the Topline system yields the best values.

From our investigations, we have found that the use of sep-

arate excitation module as in CycleVQVAE significantly de-

grades the phonetic accuracy in converted speech, due to the

high-error in excitation estimation using generated spectral fea-

tures. Hence, its worst CER values compared to CycleVAE with

joint excitation modeling. However, for higher F0 into lower F0

conversion, as in English sets, the ad-hoc joint excitation mod-

ule seems to underestimate the converted prosody, hence, the

CycleVAE has lower Sim value in English test. Further, the

CycleVAE also uses refined input excitation features, where it

could produce less oversmoothed spectral trajectory compared

to CycleVQVAE, hence, its acceptably higher MOS scores even

though it does not use fine-tuned WaveNet vocoder. To improve,

we will investigate the use two separate latent spaces for a cyclic

spectral and excitation modeling.

6. Conclusions

We have presented a novel framework for unsupervised sub-

word units discovery based on cyclic spectral modeling with

variational autoencoder (VAE). Continuous latent space is pro-

posed through cyclic VAE (CycleVAE), while discrete latent

space is proposed through cyclic vector-quantized VAE (Cy-

cleVQVAE). Further, speech generation, e.g., for voice conver-

sion, is made possible by additional excitation module, in a sep-

arate or in a joint modeling manner to spectral module, and by

WaveNet vocoder. The experimental results demonstrate that

the proposed framework is capable of achieving a mean opin-

ion score of 3.84, a character error rate of 0.21, and a speaker

similarity score of 3.91 in the ZeroSpeech 2020 challenge re-

sults of 2019-task. Future work includes joint cyclic spectral

and excitation modeling with separate latent spaces, and an im-

provement of neural vocoder fine-tuning.
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