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Abstract
Electroglottography is a non-invasive technique to acquire the
vocal folds activity across the larynx called EGG signal. The
EGG is a clean signal free from vocal tract resonances, the pa-
rameters extracted from such a signal finds many applications
in clinical and speech processing technology. In this paper, we
propose a classification based approach to detect the significant
parameter of the EGG such as glottal closure instant (GCI). We
train deep convolutional neural networks (CNN) to predict if
a frame of samples contain GCI location. Further, the GCI
location within the frame is obtained by exploiting its unique
manifestation from its first order derivative. We train several
CNN models to determine the suitable input feature represen-
tation to efficiently detect the GCI location. Further, we train
and evaluate the models on multiple speaker dataset to deter-
mine and eliminate any bias towards the speaker. We also show
that the GCI identification rate can be improved significantly
by the model trained with joint EGG and derivative (dEGG)
signal. The deep models are trained with manually annotated
GCI markers obtained from dEGG as reference. The objec-
tive evaluation measures confirmed that the proposed method
is comparable and better than the traditional signal processing
GCI detection methods.
Index Terms: GCI, EGG, CNN, Electroglottograph, dEGG

1. Introduction
The human speech production can be approximated by the
source-filter model where the glottal source signal excites the
vocal tract filter to produce the acoustic speech [1]. The vi-
bration of vocal folds creates the source of excitation to the
vocal tract system. The instant during which the vocal folds
make maximum contact is the glottal closure instant (GCI) dur-
ing which the vocal tract is excited with maximum extent [2].
The GCI detection from the speech is a hard problem due to
the presence of vocal tract resonances, lip radiations, and other
unwanted external noises. Hence, the natural choice for GCI
detection is the simultaneously recorded EGG along with the
speech which is the correlate of the glottal source signal. The
accurately detected GCI can be used in many speech related
applications: the inverse of the difference between consecutive
GCIs forms the fundamental frequency of the speaker [3] [4]
which can be used for speech synthesis [5], speech recogni-
tion [6], speaker verification [7], singing tonic identification
and so on. The GCI markers can be used for various pitch
synchronous analysis of speech [8], prosody modification [9].
Also, GCI parameters extracted from the EGG can be used for
studying the pathological condition of vocal folds of a vocal
disorder patient non-invasively [10] [11] [12] [13].

We can broadly (not exhaustively) classify the avail-
able GCI detection methods into three categories: 1) meth-
ods which directly work on EGG by amplitude threshold-

ing and its derivative signal dEGG, and combination of
both [14] [15] [16] [17] [18], 2) wavelet transform based ap-
proaches [19] [20] [21] [22] [23], and 3) empirical mode de-
composition methods [24] [25] [26]. It should be noted that
most of the aforementioned methods depend heavily on am-
plitude thresholding derived either from the pattern observed
from the signal or empirically from the dataset used to design
the detection technique. Also, most of the methods use hand-
crafted heuristics and rules to pick the GCI location which fur-
ther degrades the detection accuracy. Although wavelet trans-
form based methods are quite popular for GCI detection, they
require careful task specific supervision to choose the right pa-
rameters such as decomposition mother wavelet, signal decom-
position levels, the sampling frequency of the signal. Further-
more, multiple signal processing steps after decomposition fur-
ther limit the generalizability of the method for entirely new
data samples. On the other hand, empirical mode decomposi-
tion methods are limited by the empirical selection of the re-
quired number of intrinsic mode frequencies, time complexity
of computing signal modes, combining empirically chosen sig-
nal modes whose characteristic features suitable for extracting
GCI locations.

The aforementioned limitations of the existing methods
motivated us to propose a parametric classification based ap-
proach to GCI detection. Our contributions in this paper in-
clude 1) we propose a supervised classification based GCI de-
tection from EGG, which was not been explored before to the
best of our knowledge. 2) We model GCI detection as a two
class classification problem by training deep convolutional neu-
ral networks which automatically learns the features and the
model parameters from the EGG data. The deep model pre-
dicts whether a frame of EGG samples contain GCI location.
The target GCI labels for model training are obtained by man-
ual annotation with dEGG as a reference signal. 3) We train
multiple CNN models to determine the suitable input feature
representation to efficiently detect the GCI locations. 4) Fur-
ther, we investigate the dependency of the model towards the
speaker/gender. 5) We show that the GCI identification rate can
be improved significantly by the model trained with joint EGG
and its derivative signal. The proposed GCI detection method
is evaluated by accuracy and reliability measures and compared
with several state-of-the-art GCI detection methods.

2. GCI Detection from EGG
2.1. Dataset

We have created ground truth GCI for training CNN model from
CMU ARCTIC dataset [27]. The CMU ARCTIC dataset con-
sists of simultaneously recorded speech and EGG for female
(SLT) and male (BDL, JMK) speakers. The negative peaks in
the differenced EGG (dEGG) are taken as a reference to mark
GCI locations. All EGG signals are downsampled to 16 kHz
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Figure 1: Illustration of EGG, dEGG and GCI markers.

prior to annotation. A sample data from CMU ARCTIC dataset
illustrating EGG and dEGG used to mark the GCI locations is
shown in Fig1. From Fig. 1, we can observe that the negative
peaks of the dEGG signal are used to mark the reference GCI
locations. It should be noted that even though GCI manifests
as a negative peak in the dEGG signal, it is not trivial to ex-
tract the GCI locations by thresholding due to varying strength
of excitation, double peaks, abrupt vocal folds vibration and so
on [28, 29, 30, 31].

2.2. Feature Representation

Most of the popular GCI detection methods depend on EGG or
its derivative signal to obtain the GCI locations. In this work,
we explore both EGG and dEGG to determine the importance
of both representations to reliably identify the GCI locations.
The slow moving vocal tract structure corrupts the EGG signal
recorded from the EGG device by modulating low frequency
baseline oscillations. Hence, initially, we remove the baseline
oscillations by high pass filtering the EGG signal with 20 Hz
cutoff frequency [32]. The high pass filter is a minimum or-
der finite impulse response (FIR) implementation of Matlab®

with delay compensation. The input feature vector to the CNN
model is the non-overlapping frames of 16 samples. Each frame
is labeled with binary 1 or 0 which represents the presence or
absence of GCI location within the frame as a target label for
the CNN model. We call the frame containing GCI location as
GCI frame and the frame without GCI as non-GCI frame. The
specific reasoning for choosing non-overlapping frames, feature
vector selection around GCI location, and the decision for se-
lecting 16 samples (1 ms) feature vector frames for classifica-
tion are discussed elaborately in the following subsections.

Figure 2: Proposed CNN classification based GCI detection
model (FS = filter size, FC = fully connected).

2.3. GCI Classification Model

The proposed deep CNN GCI classification model is shown in
Fig. 2. The CNN model consists of three CNN layers. The in-
put to the CNN model is the frames of non-overlapping samples
of EGG or dEGG or combination of both. Each convolution
layer is followed by batch normalization. The d-dimensional

deep feature vector from the last convolution layer is connected
densely to the sigmoid activation function to predict the class
probability for each frame. The GCI is manifested as a nega-
tive peak in the dEGG and also as a sudden change of slope in
EGG signal hence, we drop max pooling layers in the proposed
model to avoid the model bias towards the maximum amplitude
of EGG and dEGG near GCI. In order to avoid the model being
over-fitted to training data, a dropout layer with a dropout prob-
ability of 0.25 is added after each batch normalization layer.
The network is trained to minimize the binary cross entropy
loss between the target label y and the predicted label ŷ

L(y, ŷ) =

2∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (1)

The loss function is optimized by ADAM optimizer with a
learning rate of 0.0001. The model is trained for 1000 epochs
with batch size of 2048 frames randomly selected from the
training set for each iteration. The index of the minimum value
of the negative derivative of the samples of the predicted frame
with its two neighbors of EGG signal is hypothesized as GCI
location.

We evaluate the proposed GCI detection using Identifica-
tion rate (IDR): measures the percentage of GCI detected ex-
actly one per glottal cycle. False alarm rate (FAR): the percent-
age of glottal cycles for which more than one GCI is detected.
Miss rate (MR): the percentage of glottal cycles for which no
GCI is detected. Identification accuracy (IDA): the standard
deviation of the timing error between the detected and the cor-
responding reference GCI [23].

2.4. Experiments

In this section, we describe several experiments which are con-
ducted to investigate the significance of feature vector selec-
tion around the GCI location as GCI frame, model bias to the
speaker/gender of the data used for training the model, and the
importance of combining features to improve the GCI classifi-
cation accuracy. All models are trained with SLT dataset with
train, test, validation split of 80%, 10%, and 10% respectively
unless otherwise explicitly mentioned.

2.4.1. Non-overlapping frames for classification
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Figure 3: Posterior class prediction probabilities for
overlapping and non-overlapping EGG frames.

The proposed CNN model discussed in 2.3 is trained with
frames of 16 samples dimension to predict the class (GCI or
non-GCI frame) probability. We trained CNN models to in-
fer whether overlapping or non-overlapping frames are suit-
able for GCI classification. We trained independent models for
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overlapping (16 samples frame width with 8 samples overlap)
and non-overlapping (16 samples non-overlapping) frames. We
found that multiple frames around the GCI location are pre-
dicted with high class probabilities for overlapping frames. This
is due to overlapping frames around the GCI location shares
relatively common information about GCI, results in multiple
frames being predicted as GCI frames which requires addi-
tional post-processing techniques to reliably detected GCI lo-
cation within the predicted frames around the GCI, which not
only increases computational complexity but also requires ad-
ditional handcrafted rules. On the other hand, the model trained
with non-overlapping frames confidently assigns high probabil-
ity scores only for GCI frames and very low or negligible proba-
bility scores for non-GCI frames. The predicted class probabil-
ities of the models trained on overlapping and non-overlapping
frames of EGG is shown in Fig. 3. From Fig 3, we can observe
that multiple frames around GCI location are assigned with high
posterior class probabilities by the model trained with overlap-
ping frames whereas only GCI frames predicted with high class
probability by the model trained with non-overlapping frames.
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Figure 4: Class prediction probabilities for varying feature
vector dimensions.

2.4.2. Frame size

We trained several models to confirm the significance of frame
size/length for the unambiguous classification of the input fea-
ture vector. We trained models with non-overlapping frame
lengths of 4, 8, 16, 32, 64, and 128 samples. We found that most
of the times model shows very low confidence in predicting the
GCI frame with high probability for low dimensional frames of
4 and 8 samples. This is due to the low dimensional feature
vector captures incomplete GCI related features or it fails to
accommodate the characteristic features of GCI within the low
dimensional vector results in GCI frames predicted with weak
probabilities. On the other hand, models trained with high di-
mensional frames: 32, 64, and 128 predicts frames with very
high confidence but results in many false alarms i.e., most of
the non-GCI frames are being classified as GCI frames. We
found that 16 samples frame size is the optimal frame to unam-
biguously predict the GCI frame with high confidence. In sum-
mary, the dimension of the feature vector should be lesser than
the minimum pitch period of the glottal source signal but large
enough to capture the GCI information around the GCI loca-
tion. The 16 samples non-overlapping frame size corresponds
to 1 millisecond (ms) or 1000Hz at 16KHz sampling rate i.e.,
we can classify GCI frames unambiguously with vocal frequen-
cies up to 1000Hz above which all non-GCI frames will also get
classified as GCI frames since each frame covers more than one
pitch period. Also, the fundamental frequency of the male or
female speech rarely crosses 1000Hz hence, the choice of 1ms
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Figure 5: Identification rate for varying frame sizes.

frame size is sufficient to reliably classify the input frames as
GCI or non-GCI frames. The class prediction probabilities for
8, 16, and 64 sample frame size feature vectors are shown in
Fig. 4. From Fig. 4, we can observe that low dimensional fea-
ture vectors exhibit low prediction probability for GCI frames.
High dimensional feature vectors result in mostly false alarms
whereas the right feature vector predicts the GCI frames with
high confidence. The GCI identification rates for various frame
sizes is shown in Fig. 5. From Fig. 5, we can observe that the
16 samples (1ms) frame size gives the highest identification rate
compared to other frame length choices.

2.4.3. GCI frame selection
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Figure 6: GCI frame selection around GCI location.

Through experiments, we found that not-all GCI frames
with 1ms frame size around the GCI location are suitable for
GCI classification. We found that the feature vector around the
GCI location which captures slope of the GCI location, in other
words, the feature vector which contains the samples of EGG
between the negative peak and positive peak as shown in upper
plot of Fig. 6 in solid rectangular boxes and the first half of the
dEGG as shown in the lower plot of Fig. 6 in the solid rectan-
gular box is suitable for reliably predict the GCI frames. Any
other feature vector which captures the peaks/amplitudes of the
GCI locations either in EGG or dEGG (an example is shown
in Fig. 6 as dashed rectangular plots for both EGG and dEGG)
biases the model to the GCI amplitudes resulting in weakly pre-
dicted probabilities for GCI frames of low voiced and transi-
tion regions where the GCI strength is significantly low. The
GCI identification rate for various frame sizes and GCI frame
feature vectors around the GCI location is shown in Table 1.
The GCI frame around the GCI location is selected by shifting
the ground truth GCI from its original location. A 16 sample
GCI shift and 8 samples frame size in Table 1 indicates that the
ground truth GCI is shifted by 16 samples and the 8 samples
vector GCI frame is extracted by slicing the samples left to the
new GCI location of EGG. From Table 1, we can observe that
the 16 sample frame size around the GCI location which cap-
tures the slope of the GCI is the significant feature vector for
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identifying GCI location with significantly high identification
rate.

Table 1: GCI Identification rates for various GCI frames
around the GCI location.

GCI shift\frame size 8 16 32 64
0 86.76 96.67 85.12 68.43
16 82.16 86.65 83.80 62.87
32 78.76 65.89 82.44 50.16

2.4.4. Speaker dependency of the model

In this subsection, we train and evaluate the GCI classification
CNN models to find the speaker/gender dependency of the mod-
els. The CMU ARCTIC dataset consists of EGG signals of fe-
male (SLT) and Male (BDL and JMK) speakers. To determine
the speaker’s dependency on the models, we train separate mod-
els for each speaker and test on the remaining speakers. The
average GCI identification rate for each speaker is shown in Ta-
ble 2. From Table 2, we can observe that the models trained on
one speaker and tested on another speaker irrespective of gen-
der shows variations in identification rate. The model trained on
female speaker and tested on male speakers do not show much
deviation from the identification rate of the test set of the same
female speaker. The model trained a male speaker tested on
the other male speaker showed negligible performance devia-
tion whereas the same model tested on female speaker showed
significant performance deviation. From the evaluation results
shown in Table 2, we can infer that models trained with the cross
gender data generalize to unknown speakers of any gender.

Table 2: GCI identification rates for evaluating speaker
dependency.

Dataset Female(SLT) Male(BDL) Male(JMK)
Female(SLT) 96.67 94.03 96.44
Male(BDL) 90.47 95.99 95.76
Male(JMK) 89.76 91.50 95.79

2.4.5. Combining features

In the previous subsection, we inferred that the models trained
with cross-gender data improve the GCI identification rate. In
this subsection, we discover the significance of combining EGG
and dEGG (whose negative peaks indicate the GCI locations).
We train a classification model by concatenating 16 dimensional
feature vectors of EGG and dEGG with GCI frames extracted
around GCI as discussed in 2.4.3 with the combined cross-
gender datasets SLT and BDL. Fig. 7 shows the GCI identifica-
tion rate for models trained with EGG, dEGG, and combination
of both features. From Fig. 7, we can observe that the model
trained with the combined EGG and dEGG (EGG-dEGG) fea-
tures outperforms the models trained with individual features.
The improved identification rate can be attributed to dEGG fea-
tures that act as complementary to EGG in reliably classifying
GCI frames.

2.4.6. Evaluation

We compare the proposed method with popular GCI detection
techniques: zero frequency filtering (ZFF) [33], SIGMA [23],
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Figure 7: Identification rate for models trained with EGG,
dEGG and combined EGG-dEGG features.

TXGEN [34] and HQTx [34]. Table 3 shows the comparison
of proposed method with other techniques. The CNN classi-
fication model used for comparing with other methods is the
one trained with combined EGG and dEGG features discussed
in 2.4.5 with SLT, BDL as the training set and JMK as the test
set. From Table 3, we can observe that the identification rate
of the proposed method is comparable and better than the other
popular GCI detection techniques. It is also observed that the
GCI miss rate of the proposed method is significantly low com-
pared to other methods. Also, we can observe that the identifi-
cation accuracy of the proposed method is better than the most
recent methods such as ZFF and SIGMA.

Table 3: Comparison of proposed method with other GCI
detection techniques.

Method IDR MR FAR IDA(ms)
ZFF 96.12 3.76 0.12 0.90

SIGMA 97.05 2.77 0.17 0.50
HQTx 96.81 2.10 1.09 0.04

TXGEN 94.33 5.20 0.47 0.12
Proposed 97.94 1.26 2.07 0.30

3. Summary and Conclusions
In this paper, we proposed a classification based GCI detection
from EGG signals. We trained multiple CNN models to de-
termine the suitable input feature representation to efficiently
detect the GCI locations. Further, we trained and evaluated the
GCI detection models on multiple speaker datasets to determine
and eliminate any bias towards the speaker/gender. We showed
that the GCI identification rate can be improved significantly by
combining EGG and its derivative signal. The proposed method
is compared with several state-of-the-art GCI detection meth-
ods. As a future work, the proposed method can be extended to
glottal opening instant (GOI) detection, voice/non-voice classi-
fication of EGG frames, and also for other significant parameter
detection from EGG signal.
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