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Abstract
We investigate the use of a 14-channel, mobile EEG device in
the decoding of heard, imagined, and articulated English phones
from brainwave data. To this end we introduce a dataset that fills
a current gap in the range of available open-access EEG datasets
for speech processing with lightweight, affordable EEG devices
made for the consumer market. We investigate the effectiveness
of two classification models and a regression model for recon-
structing spectral features of the original speech signal. We re-
port that our classification performance is almost on a par with
similar findings that use EEG data collected with research-grade
devices. We conclude that commercial-grade devices can be
used as speech-decoding BCIs with minimal signal processing.
Index Terms: EEG, brain-computer interfaces, imagined
speech, neural decoding, stimulus reconstruction

1. Introduction
Brain-computer interface (BCI) research is a promising avenue
for the development of voice output communication aids (VO-
CAs), for use by individuals with impaired speech resulting
from conditions such as motor neurone disease. VOCAs incor-
porating BCIs, such as P300 spelling systems, have shown great
improvements in recent decades [1]. For individuals with ad-
vanced phonatory function decline, such systems can be essen-
tial for effective communication [2]. However, these systems
are limited by the slow rate of text entry they allow and the high
level of concentration they require of the user. Some promising
research, using non-invasive or invasive techniques, has shown
the feasibility of leveraging the EEG brainwave signal directly
to extract auditory, articulatory or phonetic features. For exam-
ple, research published in the last year alone (2019) has reported
exciting results for decoding features of speech from EEG of au-
ditory stimuli [3], of overt spoken or mimed utterances [4, 5],
and of covert imagined speech [6].

Researchers attempting to use EEG signals to decode
speech will quickly discover that few purpose-built datasets
have been recorded and released under open licences (e.g.
[7, 8, 9]). Furthermore, these data are typically recorded with
scientific-grade EEG devices whose cost, bulk, and setup re-
quirements may limit their utility in everyday scenarios. In this
study, we collect a dataset using a wearable, commercial-grade
device which offers lower fidelity with fewer electrodes, but
which is more practical for everyday use.

The present paper has three primary aims:

1. To evaluate the effectiveness of “lightweight” EEG de-
vices for speech decoding, by comparing classification
performance against data from a research-grade device.

2. To investigate different machine learning models for
speech classification and regression tasks with EEG.

3. To present a new liberally licensed corpus of speech-
evoked EEG recordings, together with benchmark results
and code.1

2. The FEIS dataset
The FEIS (Fourteen-channel EEG for Imagined Speech) dataset
[10], comprises EEG recordings of 21 English-speaking partic-
ipants recorded with a lightweight, 14-channel mobile headset
with dry electrodes (the Emotiv EPOC+) [11]. Recordings are
time-aligned with phone stimuli, consisting of three stimulus
types: heard, spoken internally (imagined) and spoken overtly.

Data collection methodology is adapted from that of the
Kara One dataset [7]. The Kara One dataset is described be-
low (section 3) and compared point-by-point with FEIS.

2.1. Participants

21 participants were recruited at the University of Edinburgh.
Participants are either native or near-native speakers of English
(CEFR level ≥ C1), with no known neurological disorders.
Three participants are left-handed, one ambidextrous, and the
remaining 17 right-handed (FEIS metadata available at [10]).

2.2. Stimuli

Sixteen English phonemes were chosen to represent a balanced
categorical spread of binary phonological features ([±nasal],
[±back], [±voice], etc). These are shown in Table 1.

Table 1: Phoneme types in the FEIS dataset
A. Consonants

Labial Alveolar Postalveolar/ Velar

Plosive (-voice) /p/ /t/ /k/
Fricative (-voice) /f/ /s/ /S/
Fricative (+voice) /v/ /z/ /Z/

Nasal (+voice) /m/ /n/ /N/

B. Vowels

Front Back

High /i/ /u/
Low /æ/ /O/

2.3. Recording procedure

High-quality audio of the phonemes listed in Table 1 was
recorded in the participants’ own voices. A single instance of
each of the 16 phones was recorded at 44.1 kHz with a car-
dioid microphone. We used audio processing software to con-
vert these single-phone prompts into stimuli consisting of five
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Figure 1: Illustration of the recording procedure described in section 3.3. Participants listen to five repetitions of a phone (recorded in
their own voice), then imagine speaking the phone five times (with the same rhythm), then overtly speak the phone five times.

repetitions of each phone. For plosives (e.g. /p/), participants
were instructed to form a neutral release (resulting in e.g. [p@]).

Participants carried out the experiment alone, sitting in a
comfortable chair in front of a laptop screen, inside a hemi-
anechoic chamber. Our intention behind these choices in
methodology is to mitigate contamination from brainwave com-
ponents resulting from unexpected audio or visual stimuli (such
as the P300 event-related potentials (ERPs) [12].

The Emotiv EPOC+ is a mobile headset with semi-flexible
sensor “arms” which allow for universal fitting, within a fixed
configuration. While this allows ease of use, it means that
electrode positions are inconsistent relative to the international
10-20 montage system [13], due to participants’ different head
sizes. For reasonable consistency, we ensure F3/F4 sensors
are 20mm above each subject’s eyebrows, and M1/M2 dummy
electrodes placed on the mastoid process (see Figure 1).

The EEG recordings consist of 160 trials, comprising 6
phonemes × 10 repetitions, randomised to maintain participant
attention. Each trial has four 5-second “epochs”, as illustrated
in Figure 1. First, a “resting” epoch, in which participants are
shown the word “REST” on screen, and attempt to clear their
mind (resting state measurement can be used for task-specific
feature extraction, and also reduces cognitive load). Next, a
“stimuli” epoch, in which participants are played their own vo-
calisation of a single phone looped five times, and shown a cor-
responding IPA representation (which participants were famil-
iar with). Next, a “thinking” epoch, in which participants are
presented with a blank screen, and imagine repeating the phone,
but without any articulator movement. Finally, a “speaking”
epoch, in which participants are prompted with an image of
a mouth to then vocalise the phone. In each of the two latter
epochs, subjects imagine/speak the phone five times in a steady
rhythm, imitating the recording played in the stimuli epoch.

2.4. Noise removal

The built-in software of the Emotiv EPOC+ performs notch-
filtering at 50 Hz and 60 Hz to remove powerline noise [11].
No signal preprocessing was carried out to remove physiologi-
cal artifacts (such as blinks or saccades). Often, an independent
component analysis (ICA) pipeline is used to remove such ar-
tifacts from the data [14]; however, since the Emotiv EPOC+
lacks the ocular channels typically used to isolate noise com-
ponents through correlation, this was not carried out. Future
work could perform ICA on FEIS by using ICA solutions from
datasets collected using other devices (as described in [15]).

3. Previous Publicly-Available Datasets
The methodology followed in the design and collection of FEIS
was based on that of the Kara One dataset [7]. Kara One con-

tains multimodal recordings of speech (heard, imagined, and
spoken). This includes audio recordings, EEG recordings, and
recordings of facial movements. The prompts used in the Kara
One dataset include English phones and single syllables.

The Kara One EEG recordings were made at a sampling
frequency of 1000 Hz using a 64-channel Neuroscan Quik-Cap.
There were 14 participants in the study, and around 30 to 40
minutes of recordings were taken for each participant.

The Kara One researchers used support vector machine
(SVM) models for binary phonological classification tasks, re-
porting accuracy results ranging from 18.08% to 79.16% (above
chance). Other researchers have reported improved results us-
ing deep neural models [16, 17].

Table 2: A comparison of our dataset (FEIS) to open-access
dataset Kara One, on which this study is modelled.

Kara One [7] FEIS (this dataset)

EEG Device 64 channels 14 channels

Sampling frequency 1000 Hz 256 Hz

No. of participants 14 21

Recording duration 30 to 40 minutes 60 minutes
(per participant)

Prompts used 11 syllables/ 16 phonemes
in trials phonemes

4. Model Building
In preliminary experiments [18] [19], we tested both subject-
dependent (test and training data are from the same subject)
and leave-one-out subject-independent models. In all condi-
tions, subject-dependent models demonstrated better accuracy
and performance. All models presented here are therefore
subject-dependent.

We employ a 80/10/10 split for training, testing and vali-
dation sets, with the exception of the support vector machine
(SVM) model, where it was convenient to use an 80/20 train-
ing/test split with 5-fold cross-validation.

4.1. Model selection

The classification/regression task pipeline is summarized in
Figure 2. First, we optionally perform ICA or other artifact
removal procedures, although this was not carried out in this
study (see Section 2.4). For each speech type (heard, imagined,
spoken), the data is split into five-second epochs. Features are
extracted from these chunks and are used to train a classifier
using the corresponding phone class labels, and a regression
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Table 3: Parameters of machine learning models trialled

Layers Loss function Hyperparameters

SVM N/A Hinge Loss C ∈ [1:1000]
(Classification) gamma ∈ [0.001:0.000001]

CNN 1 x [Conv2D, Conv2D, BatchNorm, ELU, MaxPool] Cross Entropy No. conv filters* ∈ [25, 50, 100, 200]
(Classification) 3 x [Dropout, Conv2D, BatchNorm, ELU, MaxPool] Pooling/filter length ∈ [5, 10, 20, 40]

1 x [Dense, MaxPool] Stride length (pool/filter) ∈ [3, 6, 9, 12]

Dense Network EEG→ Bottleneck: Mean Squared Adam: η = 1× 10−4;λ = 1× 10−5

+ DAE 6 x [Dense, LeakyRELU] Error Early stopping tolerance: 1× 10−10

(Regression) Vocoder Feats. Autoencoder: Additive Noise: µ = 0;σ = 1× 10−6

3 x [GaussianNoise, Dense, LeakyRELU] (encoder)
3 x [Dense, LeakyRELU] (decoder)

model using features extracted from the raw audio stimuli that
were presented/imagined/spoken.

For the classification task, two types of models are tested;
support vector machines (SVMs) and Convolutional Neural
Networks (CNNs). SVMs are a good baseline, with above-
chance performance on the Kara One dataset [7]. The models
were trained to predict binary phone classes from the EEG sig-
nal (±consonant, ±/u/, ±voice).

For the regression task of predicting vocoder features from
EEG signal data we employ two different models, a 7-layer
densely-connected neural network and a stacked Denoising Au-
toEncoder (DAE) [20]. The latter model is trained on the VCTK
speech corpus [21] to autoencode WORLD vocoder features
[22]. The former model is trained on the FEIS dataset to predict
DAE encoded features from the corresponding EEG signal. The
DAE features are extracted by running the trained DAE model
encoder on WORLD features extracted from the audio data.

4.2. Feature selection for classification

For our SVM model, we divide each 5 second “epoch” into
500ms windows with 250ms overlap, and we compute 28 sta-
tistical features (84, after adding delta and delta-delta features)
per window and per electrode. Hence, we compute a feature
vector of length 14 electrodes × 19 windows × 84 features =
22344. Of our 28 features, 19 were previously used by Zhao
and Rudzicz [7]. A full list of features is given in [10].

For our CNN model, we use 2000ms overlapping windows
of the unprocessed EEG signal. As the recording’s sampling
frequency is 256 Hz, the 2D input arrays have a dimensionality
of 512×14 (frames×electrodes).

4.3. Signal processing for regression

We bandpass filter the EEG signal into five frequency bands that
may encode functionally distinct neural oscillations [23] [24]:
delta (<4 Hz), theta (4–7 Hz), alpha (8–15 Hz), beta (16–31
Hz) and gamma (32-70 Hz). We then extract the envelope in
each band using the Hilbert transform. Following Akbari et al.
[3] we extract another 8 envelopes from bands between 70-150
Hz, in 10 Hz increments (70-80 Hz, 80-90 Hz,etc). We then
take the mean of these 8 high-gamma envelopes, for a total of 6
sets (δ, θ, α, β, γ and high-γ).

This creates an 84-value array per sample of data (6 sets ×
14 channels), which our dense network uses as input to decode
into 256-value DAE bottleneck feature vectors. For 16 kHz au-
dio, WORLD is configured to sample at a rate of 200 Hz. We
therefore resample our 256 Hz EEG signal to 200 Hz, using a
low-pass FIR filter to prevent spectral aliasing.

Figure 2: Illustration of our model-building procedure (see text
for details).

4.4. Model implementation

Table 3 shows the details of the model architectures, as well
as any hyperparameters which were tuned for by grid search.
Following [7], to reduce the number of features for our SVM
model, Pearson’s r is used to inform an N best list, N ∈ [5:100],
of most correlated features (averaged over 14 correlations-per-
electrode) selected for the feature being classified (e.g. ± Con-
sonant). We use a grid search to tune N, in addition to the hy-
perparameters in Table 3 (tuning for F-score).

Following Heilmeyer et al. [25], we employ the Deep4Net
architecture [26] for our CNN model, trained for 30 epochs with
the ADAM optimizer [27], with dropout set to 0.5.

For our regression model, the participants’ own audio and
those within the VCTK corpus are downsampled to 16 kHz be-
fore being translated into WORLD feature vectors to train the
DAE. The DAE decoders perform regression, predicting 516-
value WORLD vectors (513-value spectral envelope + f0 + ape-
riodicity + excitation) from the bottleneck features generated by
the EEG→ bottleneck network.

4.5. Evaluation Metrics

For binary classification we evaluate using percentage accuracy,
since we have ensured that in each condition training and test
sets contain an equal number of tokens of each class. To eval-
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uate regression models, we examine log spectral distortion (a
measure of distance between original and decoded spectra) and
signal-to-noise ratio, calculated (where P is average power) as
SNRdB = 10 log10(PSignal)− 10 log10(PNoise).

5. Results and Discussion
5.1. Comparison of Classification Models

Table 4 indicates that the better-performing model of the two
classifiers we compared was the SVM, which consistently
achieved above-chance accuracy, while the CNN did not. The
reasons for this require further investigation, but may be due to
improved feature selection for the SVM, or the more complex
CNN model requiring more training data to be effective [28].

Table 4: A comparison of the performance of our SVM and
CNN on the ± Consonant classification task (FEIS dataset,

averaged across 5 subject-dependent models)

Percentage Accuracy (std. dev)

Task Hearing Thinking Speaking

SVM 64.0 (16.5) 69.0 (13.2) 63.7 (21.2)
CNN 51.2 (5.7) 49.0 (6.1) 49.4 (6.3)

5.2. Classification results on Kara One and FEIS

The results in Figure 3 compare averages across five subject-
dependent models built for randomly-selected subjects. We
show that for most tasks using the Kara One dataset, collected
with a 64-channel headset sampled at 1000 Hz, resulted in only
slight improvements in classification accuracy over the FEIS
dataset, collected with a 14-channel headset sampled at 256 Hz.
We use the SVM model, as it was shown to give better results.

Figure 3: A comparison of classifier accuracies on the FEIS
dataset (presented in this paper) and the Kara One dataset.

Error bars show one standard deviation.

5.3. Regression results

Log spectral distortion results achieved by the best model con-
structed are shown in Table 5. The average SNR for this model
is -1.62dB (standard deviation 0.91). An example spectrogram
generated by this model is shown in Figure 4. While the de-
coded audio is not intelligible, it is nevertheless possible to dis-
cern speech from non-speech.

In future studies, we may modify our regression architec-
ture to include convolutional layers. Our dense feedforward

architecture relies on spectral information extracted during the
preprocessing stage. CNN models, in contrast, may be able to
learn to extract relevant spectral information [26]. CNNs have
additional advantages for EEG data. Since they often achieve
better results than dense feedforward nets with the same num-
ber of learnable parameters [29], we may be able to use a larger
input, (corresponding a broader temporal context) without un-
duly increasing the size of the model. Additionally, there is evi-
dence that EEG signals are hierarchical in the temporal domain
(e.g. [30], [31]); CNNs are well-suited to extracting higher-
level features from hierarchically-structured inputs [32]. How-
ever, since the CNN model trialled on the classification task
performed poorly, more investigation is clearly required.

Table 5: Log-spectral distortion measures on the test dataset,
organized by articulation and speech type

Mean Log Spectral Distortion (std. dev)

Hearing Speaking Thinking Average

Vowels 1.86 (0.17) 1.82 (0.20) 1.91 (0.21) 1.87 (0.20)
Nasals 1.69 (0.06) 1.62 (0.01) 1.71 (0.04) 1.67 (0.06)

Fricatives 2.37 (0.23) 2.37 (0.19) 2.39 (0.24) 2.33 (0.22)
Plosives 2.66 (0.13) 2.61 (0.12) 2.63 (0.12) 2.53 (0.24)
Average 2.17 (0.39) 2.14 (0.40) 2.19 (0.39) 2.16 (0.40)

Figure 4: A spectrogram of the original stimulus (above) and
decoded EEG (below), showing 5 repetitions of vocalised /u/.

6. Conclusions
Preliminary results using the FEIS dataset indicate that
“lightweight”, mobile EEG devices can obtain data that encode
speech processing similar to research-grade devices with higher
electrode density and fidelity, as with the Kara One dataset.
These data are sufficient to carry out binary classification tasks
based on short recordings of speech sounds with a greater-than-
chance accuracy. We have also shown some suggestive results
that the FEIS data can be used to synthesize an approximation
of the original spectral envelope, and anticipate that better de-
coding performance may be achievable with deep neural archi-
tectures employing the latest optimization techniques.
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