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Abstract
In this paper, we report our submitted system for the Ze-

roSpeech 2020 challenge on Track 2019. The main theme in
this challenge is to build a speech synthesizer without any tex-
tual information or phonetic labels. In order to tackle those
challenges, we build a system that must address two major com-
ponents such as 1) given speech audio, extract subword units
in an unsupervised way and 2) re-synthesize the audio from
novel speakers. The system also needs to balance the code-
book performance between the ABX error rate and the bitrate
compression rate. Our main contribution here is we proposed
Transformer-based VQ-VAE for unsupervised unit discovery
and Transformer-based inverter for the speech synthesis given
the extracted codebook. Additionally, we also explored several
regularization methods to improve performance even further.
Index Terms: unsupervised unit discovery, zero-speech, clus-
tering, speech synthesize, deep learning

1. Introduction
Many speech technologies such as automatic speech recogni-
tion (ASR) and speech synthesis (TTS) has been used widely
around the world. However, most such systems only cover rich-
resource languages. For low-resource languages, using such
technologies remains limited since most of those systems re-
quire many labeled datasets to achieve good performance. Fur-
thermore, some languages have more extreme limitations, in-
cluding no written form or textual interpretation for their con-
text. In the ZeroSpeech challenge [1], we addressed the latter
problem by only learning the language elements directly from
untranscribed speech.

ZeroSpeech 2020 has three challenges: 2017 Track 1, 2017
Track 2, and 2019. In this paper, we focus on the ZeroSpeech
2019 Track, where the task is called as TTS without Text. This
challenge has two major components that need to be addressed:
1) given speech audio, extract subword-like units that contain
only context information with an unsupervised learning method
and 2) re-synthesize the speech into a different speaker’s voice.

To simultaneously solve these challenges, our strategy is
to develop a primary model that disentangles the speech sig-
nals into two major factors: context and speaker information.
After the disentanglement process, a secondary model predicts
the target speech representation given the context extracted by
the primary model. Following our success in a previous chal-
lenge [2] in ZeroSpeech 2019 and several prior publications on
quantization-based approaches [3–6], we used a vector quan-
tized variational autoencoder (VQ-VAE) as the primary model
and a codebook inverter as the secondary model. To improve
our result, we introduced Transformer module [7] to capture
the long-term information from the sequential data inside the

VQ-VAE. We also explored several regularization methods to
improve the robustness and codebook discrimination scores.
Based on our experiment, all these combined methods signif-
icantly improved the ABX error rate.

2. Self-Attention and Transformer Module
The Transformer is a variant of deep learning modules that con-
sist of several non-linear projections and a self-attention mech-
anism [7]. Unlike recurrent neural networks (RNNs) such as a
simple RNN or long-short term memory (LSTM) [8] modules,
a Transformer module doesn’t have any recurrent connection
between the previous and current time-steps. However, a Trans-
former module utilizes self-attention modules to model the de-
pendency across different time-steps.

Given input sequence X = [x1, x2, ..., xS ] ∈ RS×din
where S denotes the input length and din is the input dimen-
sion, a Transformer module produces hidden representation
Z = [z1, z2, ..., zS ] ∈ RS×din . Figure 1 shows the complete
process inside a Transformer module.

Figure 1: A Transformer module
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Input sequence X is normalized by a layer-norm and pro-
cessed by a multi-head self-attention module. Self-attention
module inputs are denoted asQ (query),K (key), and V (value)
where {Q,K, V } ∈ RS×dk . To calculate the output from a
self-attention block, we apply the following formula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1)

Since a Transformer module employed multi-head self-
attention instead of single head self-attention, input Q,K, V
needed to be varied to generate non-identical representation for
each head. Therefore, for each head p ∈ {1..P}, we projected
input X with different matrices WQ

p ,W
K
p ,W

V
p and combined

the output of many single head self-attentions by concatenations
and a linear projection:

Multi-Head(Q,K, V ) = Concat(h1, ..., hP )WO

(2)

∀p ∈ {1..P}, hp = Attention(QWQ
p ,KW

K
p , V W

V
p )

(3)

where input projection matrices WQ
p ∈ Rdmdl×dk ,WK

p ∈
Rdmdl×dk ,WV

p ∈ Rdmdl×dk , output projection matrix WO ∈
RPdk×dmdl and dimension of dk = dmdl

P
. After we got the out-

put from the self-attention, we applied layer normalization [9],
two linear projections, and a rectified linear unit (ReLU) activa-
tion function.

3. Unsupervised Subword Discovery
Normally, a speech utterance can be factored into several bits of
latent information, including context, speaker’s speaking style,
background noise, emotions, etc. Here, we assume that the
speech only contains two factors: context and the speaker’s
speaking style. In this case, the context denotes the unit that
captures the speech information itself in the discretized form,
which resembles phonemes or subwords. Therefore, to cap-
ture the context without any supervision, we used a generative
model called a vector quantized variational autoencoder (VQ-
VAE) [10] to extract the discrete symbols. There are some dif-
ferences between a VQ-VAE with a normal autoencoder [11]
and a normal variational autoencoder (VAE) [12] itself. The
VQ-VAE encoder maps the input features into a finite set of
discrete latent variables, and the standard autoencoder or VAE
encoder maps input features into continuous latent variables.
Therefore, a VQ-VAE encoder has stricter constraints due to the
limited number of codebooks, which enforces the latent vari-
able compression explicitly via quantization. On the other hand,
standard VAE encoder has a one-to-one mapping between the
input and latent variables. Due to the nature of the unsuper-
vised subword discovery task, a VQ-VAE is more suitable for
the subword discovery task compared to a normal autoencoder
or VAE. Compared to the machine speech chain [13–16] idea,
the encoder is expected to capture only subword-like units can
be seen as pseudo-ASR and conditional decoder with speaker
embedding can be seen as multi-speaker TTS.

We shows the VQ-VAE model in Fig. 2. Here, we define
E = [e1, .., eK ] ∈ RK×De as a collection of codebook vec-
tors and V = [v1, .., vL] ∈ RL×Dv as a collection of speaker
embedding vectors. At the encoding step, input x denotes such
speech features as MFCC (Mel-frequency cepstral coefficients)
or Mel-spectrogram and auxiliary input s ∈ {1, .., L} denotes
the speaker ID from speech feature x. In Fig. 3, we show the

Figure 2: VQ-VAE for unsupervised unit discovery consists
of several parts: encoder EncV Qθ (x) = qθ(y|x), decoder
DecV Qφ (y, s) = pφ(x|y, s), codebooks E = [e1, .., eK ], and
speaker embedding V = [v1, .., vL].

Figure 3: Building block inside VQ-VAE encoder and decoder:
a) Encoder consisted of 2x Transformer layer and 1D convolu-
tion with stride to downsample input sequence length; b) De-
coder consisted of 1D convolution, followed by up-sampling to
recover original input sequence shape.
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details for the building block inside the encoder and decoder
modules. Encoder qθ(y|x) outputs a discrete latent variable
y ∈ {1, ..K}. To transform an input in continuous variable
into a discrete variable, the encoder first produces intermediate
continuous representation z ∈ RDe . Later on, we scan through
all codebooks to find which codebook has a minimum distance
between z and a vector in E. We define this process by the
following equations:

qθ(y = c|x) =

{
1 if c = argmini Dist(z, ei)
0 otherwise

(4)

ec = Eqθ(y|x)[E] (5)

=

K∑
i=1

qθ(y = i|x) ei. (6)

where Dist(·, ·) : RDe × RDe → R is a function that calcu-
lates the distance between two vectors. In this paper, we define
Dist(a, b) = ‖a− b‖2 as the L2-norm distance.

After the closest codebook index c ∈ {1, ..,K} is found,
we substitute latent variable z with nearest codebook vector ec.
Later, decoder pφ(x|y, s) uses codebook vector ec and speaker
embedding vs to reconstruct input feature x̂.

3.1. VQ-VAE objective

Given input reconstruction across all time-step ∀t ∈ [1..T ],
X̂ = [x̂1, .., x̂T ] and closest codebook index [c1, .., cT ], we
calculate the VQ-VAE objective:

LV Q =

T∑
t=1

− log pφ(xt|yt, s) + γ‖zt − sg(ect)‖
2
2, , (7)

where function sg(·) stops the gradient:

x = sg(x);
∂ sg(x)

∂ x
= 0. (8)

The first term is a negative log-likelihood to measure the re-
construction loss between original input xt and reconstruction
x̂t to optimize encoder parameters θ and decoder parameters
φ. The second term minimizes the distance between intermedi-
ate representation zt and nearest codebook ect , but the gradient
is only back-propagated into encoder parameters θ as commit-
ment loss. The impact from commitment loss controlled with
a hyper-parameter γ (we use γ = 0.25). To update the code-
book vectors, we use an exponential moving average (EMA)
[17]. EMA updates the codebook E independently regardless
of the optimizer’s type and update rules, therefore the model
is more robust against different optimizer’s choice and hyper-
parameters (e.g., learning rate, momentum) and also avoids pos-
terior collapse problem [18].

3.2. Model regularization

3.2.1. Temporal smoothing

Since our input datasets are sequential data, we introduced tem-
poral smoothing between the encoded hidden vectors between
two consecutive time-steps:

Lreg =

T−1∑
i=1

‖zt − zt+1‖22. (9)

The final loss is defined:

L = LV Q + λLreg, (10)

where λ denotes the coefficient for the regularization term.

3.2.2. Temporal jitter

Temporal jitter regularization [3] is used to prevent the latent
vector co-adaptation and to reduce the model sensitivity near
the unit boundary. In the practice, we could apply the temporal
jitter by:

jt ∼ Categorical(p, p, 1− 2 ∗ p) ∈ {1, 2, 3} (11)

ĉt =


ct−1, if jt = 1 and t > 1

ct+1, if jt = 2 and t < T

ct, else
(12)

et = E[ĉt] (13)

where p is the jitter probability, ct is the closest codebook index
at time-t and ĉt is the new assigned codebook index after the
jitter operation.

4. Codebook Inverter
A codebook inverter model is used to generate the speech rep-
resentation given the predicted codebook from our Transformer
VQ-VAE. The input is [E[c1], ..,E[cT ]], and the output is the
following speech representation sequence (here we use linear
magnitude spectrogram): XR = [XR

1 , ..,X
R
S ].

In Fig. 4, we show our codebook inverter architecture that
consists of two multiscale 1D convolutions and three Trans-
former layers with additional sinusoidal position encoding to
help the model distinguish the duplicated codebook positions.
Depends on the VQ-VAE encoder architecture, the predicted

Figure 4: Codebook inverter: given codebook sequence
[E[y1], ..,E[yT ]], we predict corresponding linear magnitude
spectrogram X̂R = [xR1 , ..x

R
S ]. If lengths between S and T are

different, we consecutively duplicate each codebook by r-times.
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codebook sequence length T could be shorter than S because
the VQ-VAE encoder qθ(y|x) have several convolutional layers
with stride larger than one. Therefore, to re-align the codebook
sequence representation with the speech representation, we du-
plicate each codebook occurrences ∀t ∈ {1..T}E[ct] into r
copies side-by-side where r = S/T . To train a codebook in-
verter, we set the objective function:

LINV = ‖XR − X̂R‖2 (14)

to minimize the L2-norm between predicted spectrogram
X̂R = Invρ([E[c1], ...,E[cT ]]) and groundtruth spectrogram
XR. We defined Invρ as the inverter parameterized by ρ. Dur-
ing the inference step, Griffin-Lim [19] is used to reconstruct
the phase from the spectrogram and applied an inverse short-
term Fourier transform (STFT) to invert it into a speech wave-
form.

5. Experiment
In this section, we describe our pipeline, including feature pre-
processing, model settings, and hyperparameters.

5.1. Experimental Set-up

There are two datasets for two languages, English data for the
development dataset, and a surprising Austronesian language
for the test dataset. Each language dataset contains subset
datasets: (1) a voice dataset for speech synthesis, (2) a unit dis-
covery dataset, (3) an optional parallel dataset from the target
voice to another speaker’s voice, and (4) a test dataset. The
source corpora for the surprise language are described here
[20, 21], and further details can be found [1]. We only used
(1) and (2) for training the VQ-VAE codebook and inverter and
(4) for evaluation.

For the speech input, we experimented with two different
feature representations, such as Mel-spectrogram (with 80 di-
mensions, 25-ms window size, 10-ms time-steps) and MFCC
(with 39 dimensions, 13 main +∆ + ∆2, 25-ms window size,
10-ms time-steps). Both MFCC and Mel-spectrogram are gen-
erated by the Librosa package [22]. All models are imple-
mented with PyTorch library [23]. We use Adam [12] optimizer
with learning rate 1e− 4 for training both models.

5.2. Experimental Results

In this subsection, we report our experiment based on different
scenarios and hyperparameters with the English dataset. First,
we use different features as the input for VQ-VAE in Table 1.
We compared the effect of using log Mel-spectrogram with 80
dimensions versus MFCC+∆ + ∆2 with 39 dimensions.
Table 1: ABX and Bitrate result between MFCC and log Mel-
spectrogram features on Transformer VQ-VAE (TrfVQVAE with
K = 128, stride 4×)

Model ABX Bitrate
TrfVQVAE with log-Mel 33.79 171.05
TrfVQVAE with MFCC 21.91 170.42

Based on the result on Table 1, we determined that MFCC
provides much better results in terms of ABX error rate. From
this point, we use MFCC as the VQ-VAE input features. In
Table 2, we compared our proposed model with our submis-
sion from previous challenge [2] and we also explored different
codebook sizes to determine the trade-off between the ABX er-
ror rate and bitrate.

Table 2: ABX and Bitrate result between our last year submis-
sion and new proposed Transformer VQ-VAE.

Model ABX Bitrate
Conv VQVAE (stride 4×, K=256) [2] 24.17 184.32

TrfVQVAE (stride 4×, K=64) 22.72 141.82
TrfVQVAE (stride 4×, K=128) 21.91 170.42
TrfVQVAE (stride 4×, K=256) 21.94 194.69
TrfVQVAE (stride 4×, K=512) 21.6 217.47

Based on the result on Table 2, by using Transformer VQ-
VAE, we outperformed our previous best submission by -2.2
ABX error rate and with a similar bitrate. Later on, by us-
ing small codebook sizes K = 64, we reduce the bitrate by
-30 points compared to K = 128, but we sacrifice the +0.8
ABX error rate. We explored different regularization methods
to improve transformer VQ-VAEs performance in Table 3. In
Table 3, we show the result from Transformer VQ-VAE (stride
4×, K=128) with different λ smoothing coefficient, different
jitter probability and the combination between both regulariza-
tion methods. We found out that by combining both temporal
smoothing and jittering, we get -1.77 ABX error rate improve-
ment.

Table 3: ABX and Bitrate result between different temporal
smoothing coefficient λ, jitter probability p, and their combi-
nation for Transformer VQ-VAE regularization. (Notes: F de-
notes our submitted system. After the submission, we continue
the experiment and we found out another hyperparameters com-
bination brings even lower ABX than our submitted system.)

Model ABX Bitrate
TrfVQVAE (stride 4×, K=128) 21.91 170.42
+ temp smooth (λ = 1e− 2) 21.88 169.02
+ temp smooth (λ = 5e− 3) 21.67 169.2
+ temp smooth (λ = 1e− 3) 21.75 169.56

+ temp jitter (p = 0.05) 21.57 166.19
+ temp jitter (p = 0.075) 21.70 164.08

+ temp smooth (λ = 5e− 3) F
+ temp jitter (p = 0.05)

20.71 171.99

+ temp smooth (λ = 1e− 3)
+ temp jitter (p = 0.05)

20.14 167.02

6. Conclusions
We described our approach for the ZeroSpeech 2020 challenge
on Track 2019. For the unsupervised unit discovery task, we
proposed a new architecture: Transformer VQ-VAE to capture
the context of the speech into a sequence of discrete latent vari-
ables. Additionally, we also use the Transformer block inside
our codebook inverter architecture. Compared to our last year’s
submission, replacing convolutional layers with Transformer
gives a significant improvement up to -2.2 ABX error rate. To
improve the result further, we investigated several regularization
methods. In the end, combining both temporal smoothing and
jittering improved the Transformer VQ-VAE performance up to
-1.77 ABX error rate compared to the un-regularized model.
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