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Abstract 
The purpose of this study was to determine the articulatory 
phenotypes of amyotrophic lateral sclerosis (ALS) and 
Parkinson's disease (PD) using a novel acoustic-based 
framework that assesses five key components of motor 
performance: Coordination, Consistency, Speed, Precision, and 
Rate. The use of interpretable, hypothesis-driven features has 
the potential to inform impairment-based automatic speech 
recognition (ASR) models and improve classification 
algorithms for disorders with divergent articulatory profiles. 
Acoustic features were extracted from audio recordings of 18 
healthy controls, 18 participants with ALS, and 18 participants 
with PD producing syllable sequences. Results revealed 
significantly different articulatory phenotypes for each disorder 
group. Upon stratification into Early Stage and Late Stage in 
disease progression, results from individual receiver operating 
characteristic (ROC) curves and decision tree analyses showed 
high diagnostic accuracy for impaired Coordination in the 
Early Stage and impaired Rate in the Late Stage. With 
additional research, articulatory phenotypes characterized using 
this framework may lead to advancements in ASR for 
dysarthric speech and diagnostic accuracy at different disease 
stages for individuals with distinct articulatory deficits. 
Index Terms: differential diagnosis, dysarthric speech, 
interpretable features, automatic speech recognition, objective 
assessment  

1. Introduction 
Despite the negative impact of disordered articulation on 
speech intelligibility, there is currently no established set of 
metrics of articulatory impairment that reliably and accurately 
distinguish among divergent speech motor disorders1. The need 
for improved accuracy and efficiency in speech assessments has 
long been documented2. While disruptions in articulation have 
been found to be increasingly important for differential 
diagnosis3,4, there is little consensus about the core articulatory 
features that characterize distinct speech motor disorders. This 
gap in speech marker development reflects our limited 
understanding of how neurologic disease affects speech motor 
function and as a result, (1) slows the development of ASR 
systems and classification algorithms for differential diagnosis 
and (2) negatively impacts clinical confidence in assessment 
and treatment of speech motor disorders2. These deficiencies in 
objective, impairment-based articulatory features motivate our 
research on identifying speech motor phenotypes. 

Current approaches for classifying speech motor 
impairments rely primarily on the detection of abnormal speech 

characteristics by human labelers, specifically expert speech-
language pathologists5-8. The most widely accepted set of 
atypical speech features was developed to classify dysarthria 
subtypes (i.e., flaccid, spastic, ataxic, hypokinetic, 
hyperkinetic, mixed)5,6. This feature set, known as the Darley, 
Aronson, and Brown (DAB) paradigm, was proposed over 50 
years ago prior to the advent of modern speech analytic 
techniques. Despite the perceptual biases inherent to symptom-
based phenotyping7,9, research has been slow to validate the 
DAB features using quantitative analyses. 

Data-driven approaches have attempted to address the 
limitations of perceptual assessments through the use of 
automatic feature extraction from open-source software 
programs such as OpenSMILE10,11,12. Although some of these 
feature sets have achieved high diagnostic accuracy rates for 
differential diagnosis, the opaque nature of the features ⎼ and 
the means by which they are derived ⎼ provides little insight 
into the underlying physiology of the motor disorder13. Recent 
work by Hlavnička et al.14 and software programs such as 
NeuroSpeech15 have offered more interpretability by grouping 
features into speech subsystems (e.g., respiration, phonation, 
articulation, resonance). Nevertheless, despite previous 
research showing that articulatory features account for the 
majority of intelligibility loss in dysarthric speakers compared 
to features from the other subsystems3,4, the articulatory 
subsystem remains widely studied as a unidimensional system, 
with much of the focus on more global measures such as 
articulatory rate. Current studies have discussed a plethora of 
novel features, but there is little guidance regarding how these 
features map onto different components of articulation. The 
absence of a comprehensive view of articulation is problematic 
because specific pathophysiologies may have differential 
impacts on articulatory function16-19. 

In Rowe & Green (2019), we proposed a framework 
comprised of four key components that comprehensively 
characterize speech motor control: Coordination20-22, 
Consistency20,23,24, Speed20,25, and Precision20,25. Using this 
framework, with the added component of Rate19, we presented 
a subset of interpretable acoustic metrics that correspond to 
each of the articulatory components (see Figure 1). For the 
rationale behind our feature selection, see Rowe & Green 
(2019)26. Our primary goals in developing this framework are 
(1) to identify articulatory phenotypes of distinct speech motor 
disorders that can eventually guide individualized treatment 
and (2) to facilitate selection of hypothesis-driven, impairment-
based features that will improve classification accuracy of 
distinct speech motor disorders. 

In the current study, we tested the validity of our 
hypothesis-driven features by investigating the phenotypes of 
disorder groups known to differ on these articulatory 
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dimensions: hypokinetic dysarthria secondary to Parkinson's 
disease (PD) and mixed flaccid-spastic dysarthria secondary to 
amyotrophic lateral sclerosis (ALS). We are also interested in 
the classification accuracy of our hypothesis-driven features 
both prior to perceptible changes in the patients' speech and 
after symptoms emerge. While severity stratification can 
introduce bias, running algorithms on the full continuum of 
severities obscures phenotype changes that might occur 
throughout the disease, which may be crucial for early 
diagnosis and treatment. Thus, to allow for the discovery of 
disease stage-based phenotypes as well as potential early 
biomarkers, we stratified the ALS and PD groups into Early 
Stage and Late Stage for our second research question. 

 
Figure 1: Five key components of speech motor control and the 
corresponding acoustic features.  

To investigate the underlying articulatory impairments and 
subsequently test their diagnostic accuracy in patients with ALS 
and PD, we asked the following research questions: 
 

1. Disorder-Based Phenotypes: Are there differences in the 
articulatory components between the ALS group, the PD 
group, and healthy controls? 

 
2. Disease Stage-Based Phenotypes: What is the 

classification accuracy of the articulatory components 
for distinguishing between: 

a. Early Stage ALS and Early Stage PD? 
b. Late Stage ALS and Late Stage PD? 

2. Methods 

2.1. Participants 

Speech samples from 18 healthy controls, 18 participants with 
ALS, and 18 participants with PD were obtained from the 
XRMB dysarthria database and from an ongoing prospective 
study on speech deterioration due to ALS. 

Prior to analysis, participants in the ALS and PD groups 
were stratified into Early Stage and Late Stage based on ratings 
by two speech-language pathologists. The clinicians blindly 
rated the participants as "Early Stage" if they perceived the 
speech of the participant as indistinguishable from that of a 
healthy control. If the clinicians detected abnormalities in the 
participant's speech, they were instructed to rate the participant 
as "Late Stage." The clinicians also rated sentence intelligibility 
on a visual analog scale (VAS) from 0 (normal) to 100 (very 
impaired). While the ALS group had a greater range of speech 
deficits compared to the PD group, there were no statistical 
differences in sentence intelligibility between the two groups 
prior to stratification, at the early stage, nor at the late stage. 

Inter-rater reliability for sentence intelligibility ratings was 
calculated using ICC agreement (.90) and inter-rater reliability 

for disease stage classification was calculated with Cohen's 
kappa (.89). All participants were native English speakers. 
Neither the control group nor the clinician raters had any history 
of speech, language, or hearing problems. Participant 
demographics and intelligibility ratings are reported in Table 1. 
 
Table 1: Demographic and speech characteristics of the ALS 
group, PD group, and control group. 

 

2.2. Procedures 

Acoustic features were extracted from audio recordings of 
participants producing syllable sequences during the sequential 
motion rate (SMR) portion of the diadochokinetic (DDK) 
task27. To obtain the SMR, participants were instructed to 
produce the syllable sequence /pataka/ as many times as they 
could on one breath, as quickly and accurately as possible. We 
used this task because it is widely administered in clinical 
settings and because degraded performance on this task is 
strongly associated with bulbar motor involvement28. A head-
mounted microphone was positioned at approximately 5 cm 
from the mouth during the recordings. Recordings were 
sampled at a rate of 22 kHz. Acoustic analyses of the first three 
repetitions of /pataka/ for each participant were conducted 
offline using Praat29. Formant settings were adjusted based on 
the gender of the participants, with the maximum formant 
frequency set to 5500 Hz for women and 5000 Hz for men. 

2.3. Measurements 

The five components of speech motor control were represented 
using novel and existing acoustic features. All acoustic 
measurements were completed in Praat29. 

2.3.1. Coordination (Ratio of VOT to Syllable Length) 

For our measure of Coordination, we used the mean ratio of 
voice onset time (VOT) to syllable duration for each 
participant. VOT was segmented manually based on a 
wideband spectrogram and was defined by the time interval 
between the acoustic energy of the stop consonant and the 
periodic wave energy of the subsequent vowel. Inter-rater 
reliability was assessed using a second trained researcher who 
remeasured the VOTs of 10% of the samples (ICC = .94). 
Lower values indicate less aspiration and therefore reduced 
Coordination. 

2.3.2. Consistency (Between-Repetition Variability in VOT) 

For our measure of Consistency, we used the mean coefficient 
of variation of VOT between repetitions for each participant. 
The standard deviation of VOT was computed on three 
repetitions of each syllable (i.e., /pa/, /ta/, /ka/). The coefficient 
of variation was then calculated to allow for interpretation of 
the relative magnitude of the standard deviation. Larger values 
indicate greater differentiation between the repetitions and 
therefore reduced Consistency.  
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2.3.3. Speed (F2 Slope) 

For our measure of Speed, we used the mean slope of the second 
formant (F2) in the consonant-vowel transition of /ka/ for each 
participant. The velar plosive /k/ was used to calculate this 
measure because its transition was the most robust of the three 
consonants, typically characterized by a decreasing trajectory. 
Linear predictive coding was used to identify the formants in 
the speech sample. Then, the entire vowel was manually 
segmented from the first glottal pulse to the last glottal pulse on 
a wideband spectrogram. A Praat27 script was used to extract 
the continuous formant trajectories of the first and second 
formants. We then calculated the F2 slope of /ka/, with the onset 
and offset frequencies defined by the first time point of the 
formant and the midpoint of the formant, respectively. The 
midpoint was used to control for coarticulatory effects from the 
subsequent consonant. Inter-rater reliability was assessed using 
a second trained researcher who remeasured the F2 slopes of 
10% of the samples (ICC = .91). Smaller negative values 
indicate slower tongue movement and therefore reduced Speed. 

2.3.4. Precision (Between-Consonant Variability in F2 Slope) 

For our measure of Precision, we used the mean standard 
deviation of the F2 slope in the consonant-vowel transitions of 
the three distinct consonants (i.e., /p/, /t/, and /k/) within each 
repetition of /pataka/ for each participant. Lower values indicate 
less differentiation between the three consonants and therefore 
reduced Precision. 

2.3.5. Rate (Syllables per Second) 

For our measure of Rate, we used the number of syllables 
produced per second by dividing the total time required to 
complete three repetitions of /pataka/ by nine (i.e., the number 
of syllables). Lower values indicate fewer syllables produced 
per second and therefore reduced Rate. 

2.4. Statistical Analysis 

A linear mixed effects (LME) model was conducted for group 
comparisons on the five different features. Performance on each 
feature was assessed as a function of diagnosis group. A 
subject-dependent intercept was included in the model as a 
random effect to account for the inter-subject variability in 
articulatory features. Then, effect sizes for all group differences 
on each of the features were calculated using Cohen's d. 

Individual ROC curves were completed to assess the 
diagnostic efficacy of each feature at varying discrimination 
thresholds to differentiate between Early Stage ALS and PD 
and between Late Stage ALS and PD. The sensitivity and 
specificity of each feature was calculated based on an optimal 
cutpoint that maximized the value of (sensitivity2

 + specificity2). 
The area under the curve (AUC) provides the rate of successful 
classification based on each feature. 

Data classification was also performed using ensemble 
decision trees with leave-one-out cross-validation 
(subsampling). The relative importance of each feature was 
estimated using the mean decrease in impurity (MDI) method, 
in which the impurity decrease from each feature was averaged 
across trees. Because we are interested in specific hypothesis-
driven features, we used bagging rather than random sampling 
of features at each node. While individual ROC curves provide 
critical information regarding the sensitivity and specificity of 
each feature, decision trees take into account more complex 
relationships between the features to build a prediction 

algorithm that provides a weighted composite score. 
Furthermore, in contrast to other machine learning methods, 
such as support vector machine (SVM) models, decision trees 
offer an advantage as they allow for more transparency in both 
data classification and feature weighting. This transparency is 
informative to software engineers in feature selection for future 
classification algorithms and clinicians in using these features 
to guide diagnosis and treatment. 

3. Results 

3.1. Research Question 1: Disorder-Based Phenotypes 

Prior to stratification, the ALS group had significantly more 
impaired Coordination than the PD group. Compared to 
controls, the ALS group was significantly more impaired across 
all dimensions except Consistency, while the PD group was 
significantly more impaired in Speed only (see Figure 2). 
 

 

 

 
Figure 2: Boxplots of comparisons (dotted line = mean, solid 
line = median) with Cohen’s d’s and significance levels. The y-
axes of Speed and Consistency were reversed (absolute value 
and multiplied by -1, respectively) for ease of interpretation. 

3.2. Research Question 2a: Disease Stage-Based 
Phenotypes (Early Stage) 

In the Early Stage of the diseases, PD had significantly more 
impaired Speed than ALS, but ALS had significantly more 
impaired Coordination than PD (see Table 2 and Figure 3). 
According to our ROC curve analysis for each feature 
individually, Coordination revealed the highest AUC (.81), 
sensitivity (.80), specificity (.89), and accuracy (.84) for 
differentiating Early Stage ALS and Early Stage PD (see Table 
3 and Figure 3). The decision tree analysis with nine folds 
revealed an overall AUC of .88 when accounting for the 
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relationships between all five features. An MDI of 4.0 indicated 
that Coordination had the highest importance level for 
estimating group membership. 

 

 
 

Figure 3: Left panel: Barplots of z scores (horizontal line at 0 
= control group) with Cohen's d's and significance levels. Right 
panel: Individual ROC curves for each acoustic feature and 
overall decision tree ROC curve (ALS = 0, PD = 1). 

3.3. Research Question 2b: Disease Stage-Based 
Phenotypes (Late Stage) 

In the Late Stage of the diseases, ALS was significantly more 
impaired in all components except Consistency (see Table 2 and 
Figure 3). According to the ROC analysis for each feature 
individually, Rate had the highest AUC (.90), sensitivity (.88), 
specificity (.89), and accuracy (.88) for differentiating patients 
with Late Stage ALS and Late Stage PD (see Table 3 and Figure 
3). The decision tree analysis with eight folds revealed an 
overall AUC of .87 when accounting for the relationships 
between all five features. An MDI of 4.0 indicated that Rate had 
the highest importance level for estimating group membership. 
 

Table 2: Means and standard deviations for each group. 

 
 

Table 3: Classification results of individual ROC curve analysis 
and decision tree analyses. 

 

4. Discussion 
This study represents the next step towards our goal of 
characterizing articulatory phenotypes using an interpretable 

framework of speech motor control (i.e., Coordination, 
Consistency, Speed, Precision, and Rate). As a whole, ALS and 
PD had distinct articulatory phenotypes, with the ALS group 
significantly more impaired than controls across all dimensions 
except Consistency and the PD group significantly more 
impaired than controls in Speed. Our individual ROC analyses 
revealed high classification accuracy for impaired 
Coordination in the Early Stage and impaired Rate in the Late 
Stage. The MDI metrics from our decision tree analyses 
confirmed the importance of Rate and Coordination in 
estimating the appropriate diagnosis, even when accounting for 
the complex relationships between the five features. 

While the specific effects on articulatory function are not 
yet well understood, previous literature suggests distinct 
manifestations of pathophysiologies in movement in general16-
18. ALS is characterized by gradual degeneration of upper and 
lower motor neurons30. This progressive weakness of speech 
musculature results in broad impairments across multiple 
articulatory domains such as dyscoordination between supra- 
and subglottal gestures31, decreased capacity to generate 
speed32,33, and reduced phoneme distinctiveness30, which were 
all indicated by our findings. Also consistent with our results, 
the initial primary deficit in PD is slowed movement Speed due 
to a dopamine deficiency34. This finding, in conjunction with 
the preserved Rate noted in the PD group, confirms the speed-
rate dissociation characteristic of hypokinetic dysarthria seen in 
PD32, which may be related to "articulatory undershoot" or the 
inability to achieve full range of motion due to poor control over 
muscle contractions35. These results support the construct 
validity of our features as sensitive measures of distinct 
articulatory deficits (Research Question 1). 

Furthermore, the individual ROC curves and subsequent 
decision tree analyses indicated that using features 
representative of Coordination and Speed may improve 
classification accuracy algorithms for ALS and PD prior to any 
perceptible changes in speech (Research Question 2a). Notably, 
the early stage classification performance we obtained from our 
features was greater than that found in previous studies 
investigating disorder group differences in the presymptomatic 
stage12,36. The articulatory phenotypes of ALS and PD diverged 
more upon onset of speech symptoms, with Rate having the 
highest diagnostic accuracy and importance level (Research 
Question 2b). This finding is consistent with literature that has 
shown syllables per second derived from the DDK task to be 
sensitive to differentiating disorder types19,30. However, our 
additional findings of high diagnostic accuracy and importance 
for Coordination indicate that this task could be used as a more 
comprehensive measure of motor performance. 

Taken together, the findings suggest that our framework has 
potential as a valid diagnostic tool with which we can 
discriminate speech motor disorders based on their underlying 
articulatory impairments. These phenotypes—derived from 
interpretable, hypothesis-driven features—can inform 
classification algorithms for differential diagnosis and guide 
impairment-based feature selection for ASR models, ultimately 
increasing clinical confidence in assessing and treating speech 
motor disorders. Further research is needed to validate our 
acoustic features against corresponding biomechanical features. 
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