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Abstract
Laryngeal videostroboscopy is widely used for the analysis of
glottal vibration patterns. This analysis plays a crucial role in
the diagnosis of voice disorders. It is essential to study these
patterns using automatic glottis segmentation methods to avoid
subjectiveness in diagnosis. Glottis detection is an essential step
before glottis segmentation. This paper considers the problem
of automatic glottis segmentation using U-Net based deep con-
volutional networks. For accurate glottis detection, we train a
fully convolutional network with a large amount of glottal and
non-glottal images. In glottis segmentation, we consider U-
Net with three different weight initialization schemes: 1) Ran-
dom weight Initialization (RI), 2) Detection Network weight
Initialization (DNI) and 3) Detection Network encoder frozen
weight Initialization (DNIFr), using two different architectures:
1) U-Net without skip connection (UWSC) 2) U-Net with skip
connection (USC). Experiments with 22 subjects’ data reveal
that the performance of glottis segmentation network can be in-
creased by initializing its weights using those of the glottis de-
tection network. Among all schemes, when DNI is used, the
USC yields an average localization accuracy of 81.3% and a
Dice score of 0.73, which are better than those from the base-
line approach by 15.87% and 0.07 (absolute), respectively.
Index Terms: Glottis segmentation, stroboscopy, U-Net

1. Introduction
During voice production, the vocal folds play an essential role
by regulating airflow from lungs, through its quasiperiodic vi-
brations [1]. Space between the two vocal folds is called the
glottis. Sulcus Vocalis (SV) is a particular type of vocal fold
condition, in which a groove is formed in the vocal fold, lead-
ing to an incomplete glottic closure during phonation, which is
called the glottic chink. At present, examination of vocal fold
motion and classification of severity of glottic chink in SV are
done by clinical experts subjectively by directly observing the
endoscopic video. As the vocal fold structures vary anatomi-
cally from an individual to another, the reliability of subjective
analysis in making an accurate clinical decision of the pathol-
ogy is questionable. The clinicians strongly believe that stro-
boscopy is the most crucial session before voice assessment and
it would be the gold standard technique for the next 10 to 20
years [2]. However, the video stroboscopy has some challenges
while recording in a real clinical environment:1) images can be
affected by uneven illumination 2) images may be taken at the
wrong instants due to uncontrolled movements by the patient or
strong gag reflex by the patients’ tongue base 3) camera move-
ments which cause glottis to appear in different angles 4) laryn-

Figure 1: Sample images from 22 subjects describe the varia-
tions in terms of illumination, glottis shape and orientation in
video stroboscopy recording.
geal image size may vary when the distance between endoscope
and vocal folds changes. Fig. 1 shows sample stroboscopic
video images from several subjects. From the figure it is clear
that the shape of the glottis varies with respect to the camera po-
sition. Few images have been obstructed by supraglottic struc-
tures, which makes the glottis invisible as seen in the examples
shown in Fig. 2. Hence, a quantified glottis image could assist
the Speech-Language Pathologists (SLPs) in diagnosing voice
disorders in a more objective manner. In the literature, there are
only few algorithms that have been implemented for fully auto-
matic glottis segmentation [3]-[10] and less work is done using
stroboscopic videos [3] [5] [7]. Rao et al. [11] used a deep neu-

Figure 2: Example images to show the supraglottic structures
covering the glottis region.
ral network (DNN) based model, in which, they posed the glot-
tis segmentation as a pixel wise classification problem and con-
sidered the RGB values from a 3×3 neighborhood of a pixel as
a feature vector, to classify whether the pixel belongs to inside
or outside the glottis region. Lin et al. [12] had used a bounding
box for the detection of region of interest followed by a fully
convolutional network (FCN) for segmentation. Gloger et al.
[3] proposed a framework for automatic glottis segmentation.
They used a Fourier descriptor with prior glottal shape knowl-
edge from a large dataset consisting of different glottal shapes to
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localize the glottis and levelset segmentation followed by Prob-
ability Image Generation for glottal shape tracking. Cerrolaza
et al. [5] had used threshold based region growing approach for
glottis localization and the active shape model (ASM) for glottis
boundary detection. However, it failed on the testing data when
the glottal shape is much different from those in the training set.
Osma et al. [7] used a watershed transform followed by a region
merging and linear prediction for glottis segmentation.

Image segmentation and localization play a key role in med-
ical imaging applications. Recently, many deep learning meth-
ods have achieved a great success in image segmentation. Fully
Convolutional Networks (FCNs) is one of those methods that
have shown good results in segmentation [13]-[16]. In this
work, we address the problem of glottis segmentation using two
types of FCNs called U-Net [13] and Segnet [15]. U-Net [13] is
especially designed for the segmentation of biomedical images.
It has an encoder-decoder architecture with skip connections.
U-Net [13] uses the skip connections to connect each pair of en-
coder layer and the corresponding decoder layer, which passes
the spatial information directly to the much deeper layers of
the network and, in turn, gives a more accurate segmentation.
Similar to U-Net [13], Segnet [15] also has encoder-decoder ar-
chitecture without skip connection.

In this study, we experiment the U-Net with and without
skip connection (Segnet), using three different weight initial-
ization schemes followed by fine-tuning to achieve good results
for glottis segmentation. For glottis detection, we train a fully
convolutional network, which acts as a binary classifier to de-
tect the presence or absence of glottis in a given image. The net-
work is trained using 24970 frames, which are extracted from
22 stroboscopic videos, the sample frames of which are shown
in Fig. 1. The trained detection network weights are used for
better initialization in U-Net to get more precise segmented out-
put compared to the random initialization. For glottis segmenta-
tion, we train U-Net with 921 images, which are extracted from
18 subjects (among 22 subjects mentioned earlier), where glot-
tis boundaries are marked by 3 SLPs. On the other hand, for
glottis detection network, all images are grouped into two sets,
one having glottis and the other where glottis is absent. We
use a 4-fold cross validation setup for both the detection as well
as the segmentation tasks. We perform experiments to com-
pare the results of U-Net with the three different initialization
schemes. It is shown that the performance of the glottis seg-
mentation network is increased when appropriate weight initial-
ization scheme is used although it is fine-tuned with less labeled
data. Here the proposed method achieves an average localiza-
tion accuracy of 81.3% and a Dice score [17] of 0.73, which is
significantly better than the DNN based baseline approach for
glottis segmentation by 15.87% and 0.07 respectively.

2. Dataset
For this work, 22 stroboscopic videos were recorded from 22
subjects (14 males and 8 females) by an Otorhinolaryngologist.
For the recording, Xion Endostrob E with 70 degree rigid scope
and Digital Video Archive Software (DiVAS) version 2.5 were
used as the hardware and software setup, respectively. During
the process of recording, each subject was asked to sit on a stool
facing the examiner, and Xylocaine solution was sprayed to the
participant’s oropharyngeal region to avoid gag reflex. The par-
ticipant was asked to extend the tongue out and instructed to
phonate the vowel /i/ (as in word ‘bit’) for 4-5 seconds. The
subject was asked to repeat the phonations until the examiner
could get a clear picture of the glottis.

In this work, we consider 22 stroboscopic videos (one video
from each of the 22 patients with SV) for experiments, denoted
by Si, i = 1, .....22. All videos have recordings of multiple
phonations and all are recorded in an avi format with a resolu-
tion of 720×576 and a frame rate of 25 frames/sec. Duration of
a video varies from 11s to 84s. The average duration of a video
is 44s. The subjects who have vocal folds mass lesions or any
other voice disorders (apart from SV) are excluded in this work.
We train glottis detection network with a set of 24970 images,
which are extracted from 22 stroboscopic videos and labeling
is done by manually segregating the glottal and non-glottal im-
ages into two groups. Out of 24970 images only 921 randomly
selected images from 18 subjects are used for glottis segmenta-
tion in this work. A graphical user interface is developed using
MATLAB, to mark the boundaries of the glottis region. Each of
the 921 images has been annotated by three SLPs

3. Proposed Approach
The proposed approach mainly involved two steps: 1) Given
the sequence of frames, detect the frames with glottis images.
2) Given the glottis image, segment the glottis.

3.1. Glottis Detection Network

The network architecture of the glottis detection network
(GDN) is shown in Fig. 3(a). The glottis can be present in
any part of the images and can vary drastically from training
set to test set. To make the predictions robust to translation we
use fully convolutional network based classifier. A fully convo-
lutional network consists of convolution, batch normalization,
relu activation followed by the max pooling of (2, 2). Finally
we have used a sigmoid layer to classify if the image contains
glottis or not. We give 224×224×3 RGB image as an input to
the GDN which classifies the presence or absence of glottis in
each frame of the video. We consider images with clear visible
glottis as one class (Label = 1) and remaining all images as the
other class (Label = 0). We have experimented GDN with and
without batch-normalization layers to achieve a good classifica-
tion accuracy.

(a)

(b)
Figure 3: (a) Blocks summarizing the architecture of glottis de-
tection network (GDN) (b) U-Net based glottis segmentation
network.
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3.2. Glottis Segmentation Network

The architecture of the segmentation network is shown in Fig.
3(b). Glottis segmentation has been performed on the images
selected by GDN with the glottis. We use a variant of U-Net ar-
chitecture for the segmentation: 1) U-Net with skip connection
(USC) having 702,977 parameters 2) U-Net without skip con-
nection (UWSC) having 666,113 parameters. U-Net [13] has
been shown to work well for various bio-medical image seg-
mentation problems. But in the current work, the main limita-
tion of the U-Net is that the number of annotated images (921)
are significantly less compared to the number of parameters of
the U-net (666k). Hence, we consider three different kind of ini-
tialization schemes for U-net (it’s variant) so that segmentation
can be done accurately using a few samples of annotated im-
ages: 1) Random weight Initialization (RI): U-Net models are
trained by initializing weights randomly. 2) Detection Network
weight Initialization (DNI): we use GDN weights to initialize
the U-Net encoder weights, which has an architecture similar to
that of the first six layers of GDN, and fine-tuned both encoder
and decoder of the U-Net with the labeled data. 3) Detection
Network encoder frozen weight Initialization (DNIFr): weight
initialization is done in a manner similar to that of the DNI ex-
cept that encoder network weights are not updated during fine
tuning. The segmentation problem is converted into pixel wise
classification problem. In our experiments, we use a mini U-
Net with the same architecture as in [13], differing only in the
way of weight initialization. Each image and corresponding an-
notation image of size 720× 576 are resized to 224× 224. We
give this image as an input to the U-Net. The skip connection
in U-Net is used for glottis localization by preserving features
that are learned in the contracting path. The final layer of the U-
Net is used to classify whether each pixel of the image belongs
to inside or outside the glottis. The network is trained with a
weighted binary cross entropy loss function. As the number of
pixels inside the glottis region is less compared to the number
of pixels outside the glottis region, the weight ratio used for
objective function is 200:1 from inside to outside the glottis re-
gion. We use adam [19] optimizer with default parameters. The
best model is saved using early stopping criteria by monitoring
validation loss. U-Net is implemented by using deep learning
libraries called keras [20] and theano [21].

U-Net consists of a contracting path with two encoders and
an expansive path with two decoders. The contracting path fol-
lows a typical architecture of a convolutional network. The first
encoder consists of 2 convolutional layers each having 64 filters
with a filter size of 3 × 3, followed by a rectified linear unit
(ReLU). This is followed by a 2 × 2 max pooling layer with
stride 2 for down-sampling. The second encoder has 2 convo-
lutional layers each having 128 filters with a filter size of 3× 3,
followed by a ReLU activation function. This is followed by
a 2 × 2 max pooling layer with stride 2. The first decoder in
the expansion path consists of an up-sampling layer followed
by 2 convolutional layers, each having 128 filters with a filter
size of 3 × 3, followed by a ReLU activation. In the second
decoder, a concatenation layer is added after up-sampling layer
with the correspondingly cropped feature map from the first en-
coder, which is called as “Unet with skip connection (USC)”. Its
absence is termed as “Unet without skip connection (UWSC)”.
This is followed by two convolution layers, each having 64 fil-
ters with 3 × 3 filter size, followed by a rectified linear unit
(ReLU). At the end, a convolution layer with a filter size of
1×1, followed by sigmoid activation is used to classify whether
each pixel belongs to inside or outside the glottis region.

3.2.1. Post Processing

From the output (Pr) of U-Net, we obtain an image where each
pixel corresponds to a probability of being inside or outside the
glottis region. In order to construct a binary image, we choose
a threshold of max(Pr) − 0.05. Here, label ‘1’ is assigned for
pixels inside the glottis region and ‘0’ for outside the glottis
region.

4. Experiments and Results
4.1. Experimental Setup

The whole dataset is divided into four folds namely, fold1:
[S1, S2, S3, S4, S5], fold2: [S6, S7, S8, S9, S10, S11],
fold3: [S12, S13, S14, S15, S16, S17], fold4:
[S18, S19, S20, S21, S22]. Among the four folds, 2 folds
are used for training, 1 fold for validation and, the remaining
1 for testing, in a round-robin fashion to form a 4-fold cross
validation setup. U-Net is trained with annotations from one
of the SLPs and evaluated on all the three annotations. We
consider the work done by Rao et al. [11] as a baseline. Both
baseline and the proposed method are evaluated with the same
dataset and fold structure.

4.2. Evaluation metrics

We have used Classification accuracy, Localization accuracy
and Dice score [17] as an evaluation metrics in this work.

Classification accuracy is used to measure the performance
of GDN. It is the ratio of number of correctly classified glottal
or non-glottal images to the total number of images.

Localization accuracy is calculated by the percentage of the
test glottal images where the centroid of predicted segment falls
inside ground truth glottis boundary. Dice score is used to mea-
sure the segmentation quality of the methods. Crum et al. [18]
present a framework to summarize the results of segmentation
studies by computing the overlap region between the predicted
pixels and the ground truth pixels. Dice score (D) is calculated
using the formula: D =

2×N(Up∩Lp)

N(Up)+N(Lp)
, where N denotes the

number of pixels inside the glottis region. Up and Lp represent
predicted pixels and ground truth pixels, respectively.

4.3. Results and Discussion
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Figure 4: Bar graph of fold-wise Dice score and mean Dice
score across all folds for all U-Net models.

We have experimented GDN with and without batch-
normalization layer between each convolutional layer. It
yields a classification accuracy of 87% and 68% with batch-
normalization and without batch-normalization, respectively.
Performance of GDN is highly affected by the images which

4803



have small glottis or supraglottic structure blocked the glot-
tis, which leads to misclassification of glottis as non-glottis.
We compare the results of U-Net with three weight initializa-

Table 1: Fold-wise Localization accuracy (%) and correspond-
ing Dice score of correctly localized images achieved by base-
line and the proposed approach.

(a) Localization accuracy (%) (b) Dice score
Baseline Proposed method Baseline Proposed method

fold1 89.9,78.7,98.5 90.6,91.2,90.6 0.76,0.76,0.81 0.78,0.77,0.76
fold2 38.0,69.0,40.0 61.4,63.6,62.3 0.67,0.69,0.64 0.74,0.76,0.74
fold3 72.2,68.6,72.8 85.9,87.1,65.3 0.62,0.63,0.52 0.72,0.75,0.72
fold4 39.9,76.2,41.4 93.9,91.2,91.7 0.56,0.66,0.55 0.66,0.64,0.65

Average 60.0,73.1,63.2 83.0,83.3,77.5 0.66,0.69,0.63 0.73,0.73,0.72

tion schemes. A total of six experiments are done with three
weight initialization schemes (RI, DNI, DNIFr) using two net-
works (UWSC, USC). Fig. 4 illustrates the fold-wise Dice score
of correctly localized images calculated from one of the SLPs
for all the six experiments and the last bar graph in each case
indicates the mean Dice score across all folds. The UWSC-
RI, USC-RI, UWSC-DNI, USC-DNI, UWSC-DNIFr and USC-
DNIFr achieve a mean Dice score of 0.678, 0.687, 0.657,
0.723, 0.642 and 0.604, respectively. Here among all the U-
Net models, USC-DNI shows the best performance, whereas
USC-DNIFr yields the worst performance. It shows that the
performance of U-Net can be increased by appropriately initial-
izing the weights of the encoder network. Hence, we consider
USC-DNI as our proposed method and it is used for comparison
with the baseline. In case of RI and DNI, among all the folds,
the Dice score for fold1 is observed to be high as it contains
clearly visible glottis images. Similarly, it is low for fold3 ex-
cept in case of USC-DNI. This is because subjects S14 and S15

(as shown in Fig. 1) have very small glottis opening. USC-DNI
yields the best results even though the glottis opening is small
in fold3.

Table 1(a) shows fold-wise Localization accuracy across 3
SLPs using the baseline and proposed approach. Table 1(b)
shows corresponding fold-wise Dice score calculated only on
the correctly localized images. The three values in each cell
indicates the Localization accuracy (or Dice score) calculated
with respect to the three SLPs’ annotations. Average Dice score
/ Localization accuracy of all folds has been shown in the last
row of Table 1. It is clear from the table that when DNI is used,
the USC performs better than the baseline. Both localization
accuracy and Dice score are high for fold1. It is due to the clear
visible glottis images present in the subjects S1, S2, S3, S4 and
S5 as shown in Fig. 1. Localization accuracy is low for fold2
using both the baseline and proposed method due to the poor
illumination in the subjects S6, S7 and S9 and the correspond-
ing Dice score is high because of the skip connection used in
the proposed approach is able to detect the exact boundary of
the glottis. On the other hand Localization accuracy for fold4
is high, but the Dice score obtained is not very high. The rea-
son for low Dice score is due to the supraglottic structures that
cover the glottis openings.

We observe that both Localization accuracy and Dice score
is improved for all the annotators using the proposed scheme
compared to the baseline. We also observe a low variance in the
averaged Localization accuracy and Dice score across 3 SLPs,
which shows the robustness of the proposed method. The us-
age of skip connection and DNI are the main reasons for get-
ting high Dice score using the proposed approach. The average
Localization accuracy of 81.3% and a Dice score of 0.73 from
the proposed approach, outperforms the baseline approach by
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Figure 5: Column (a): Three sample images with corresponding
subject number, Dice score achieved by proposed approach and
mean Dice score across pair of SLPs annotations. Column (b):
corresponding ground truth image. Column (c): correspond-
ing segmented image by baseline. Column (d): corresponding
segmentation by the proposed approach.

15.87% and 0.07, respectively. Fig. 5 illustrates the cases where
the proposed method performs better than the baseline. It can be
observed from the figure that the proposed approach does better
than the baseline even though the glottis boundary is not visible
due to low illumination in all the cases. The proposed method
performs better than the baseline even when the glottis opening
is small in case of S14. In this case, the clustering method in
the DNN based baseline might select some dark region which
is bigger than the glottis leading to poor localization. It is ob-
served that the proposed approach is not performing well for
the image in the last row in Fig. 5 where the glottis opening is
blocked by supraglottic structures.

5. Conclusions

In this work, we use two architectures, namely, GDN, to detect
the frames with glottis in a given sequence of videostroboscopic
images and U-Net using transfer learning approach for glottis
segmentation. We convert the problem of glottis segmentation
into a classification problem. Threshold based post processing
technique is used, in order to reconstruct the glottis image from
the predictions. We experiment with two U-Net architectures
by considering three different weight initialization schemes. It
is shown that the performance of the glottis segmentation net-
work is increased by using glottis detection network weight ini-
tialization although fine-tuned with less labeled data. We obtain
an average Localization accuracy of 81.3% and a Dice score of
0.73 from the proposed method, which outperforms the base-
line scheme by 15.87% and 0.07, respectively. The low variance
in the averaged Localization accuracy and Dice score across 3
SLPs suggest the robustness of the method. As a part of future
work, we want to improve the performance of U-Net using dif-
ferent loss functions. Furthermore, we would like to extend this
algorithm for all types of voice disorders.
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