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Abstract
We present in this paper an automatic speech recognition (ASR)
system for a person with an articulation disorder resulting from
athetoid cerebral palsy. Because their utterances are often un-
stable or unclear, speech recognition systems have difficulty
recognizing the speech of those with this disorder. For exam-
ple, their speech styles often fluctuate greatly even when they
are repeating the same sentences. For this reason, their speech
tends to have great variation even within recognition classes. To
alleviate this intra-class variation problem, we propose an ASR
system based on deep metric learning. This system learns an
embedded representation that is characterized by a small dis-
tance between input utterances of the same class, while the
distance of the input utterances of different classes is large.
Therefore, our method makes it easy for the ASR system to
distinguish dysarthric speech. Experimental results show that
our proposed approach using deep metric learning improves
the word-recognition accuracy consistently. Moreover, we also
evaluate the combination of our proposed method and transfer
learning from unimpaired speech to alleviate the low-resource
problem associated with impaired speech.
Index Terms: assistive technology, dysarthria, metric learning,
speech recognition

1. Introduction
In this study, we focus on the problem of speech recognition
for persons with articulation disorders caused by the athetoid
type of cerebral palsy. Cerebral palsy is usually caused by dam-
age to the central nervous system, and, consequently, it causes
movement disorders. Movements of a person with this type of
the articulation disorder can sometimes be more unstable than
usual [1]. For this reason, their utterances are often unstable
or unclear owing to their athetoid symptoms. These symptoms
also restrict the movement of their arms and legs. Most per-
sons suffering from athetoid cerebral palsy are unable to com-
municate using sign language or writing and, therefore, have a
critical need for voice-driven assistive systems [2].

Automatic speech recognition (ASR) has gained wide use
in items such as personal assistants on smartphones. In addition,
remarkable progress has been made with respect to recent devel-
opments in deep learning for ASR [3, 4, 5] in fields with access
to a large amount of training data. However, most dysarthric
speech cannot be recognized correctly because these ASR sys-
tems are trained on “typical” speech. For persons with artic-
ulation disorders, it is difficult to collect a sufficient amount
of speech data to train the model. Moreover, their speech
style is quite different from that of physically unimpaired per-
sons owing to their athetoid symptoms, which makes it diffi-
cult to recognize their speech. Therefore, special considera-
tion is needed to construct an ASR system that works well for
dysarthric speech.
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Figure 1: Examples of spectrogram uttered for /b o n y a r i/ of
a person with an articulation disorder.

In this paper, we focus on the intra-class variation prob-
lem associated with dysarthric speech recognition. Unlike the
speech of physically unimpaired persons, the speech of a per-
son with an articulation disorder has great variations, even
when he/she utters the exact same content. This is because
sudden breaths and lost consonants, for example, are unex-
pectedly caused by athetoid symptoms. When dealing with
speech recognition, this phenomenon causes a large variation
in the speech features within the same class. Fig. 1 depicts two
spectrograms of a person with an articulation disorder for the
Japanese word “bonyari” (“hazy” in English). We can see that
there are significant differences between the two spectrograms
although those examples represent the same word. To alleviate
this intra-class variation problem, we employ deep metric learn-
ing [6, 7, 8], which makes a neural network-based model learn
the similarity or distance between samples from the observed
data. This technique maps the inputs of the same class into
similar embeddings, while mapping those of a different class
into dissimilar embeddings. In this paper, we propose a deep
metric learning-based ASR system that takes into consideration
intra-class variation. Our method learns not only the bound-
ary that classifies the dysarthric speech, but also the discrimi-
native embedding inside the network. As the metric learning
method in this work, we employ the additive angular margin
loss (ArcFace) function [8] that has shown significant perfor-
mance for face recognition tasks. ArcFace has the advantages
of intra-class compactness and inter-class discrepancy, and can
be applied to general discriminative tasks.

In experiments, we show the effectiveness of our proposed
approach through a word-recognition task. We also investi-
gate whether or not our approach can be combined with trans-
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fer learning to further enhance performance. This is because
of the problem of the limited data availability associated with
dysarthric speech. To solve this problem, we employ transfer
learning from the speech data of physically unimpaired per-
sons [9].

The rest of this paper is organized as follows: In Section 2,
related works are described. In Section 3, our proposed method
is explained. In Section 4, the experimental data are evaluated,
and the final section is devoted to our conclusions.

2. Related works
In this work, we focus on a Japanese person with an articu-
lation disorder. Several databases are publicly available for
clinical speech applications [10, 11, 12]. There has been
some work done on developing an ASR system using these
databases [13, 14, 15]. Christensen, et al. [16] have shown that,
through various adaptation experiments, adapting an ASR sys-
tem on typical speech to the domain of disordered speech im-
proves performance. In [17], an articulatory-based representa-
tion has been proposed to obtain robustness for the inter- and
intra-speaker variability in disordered speech using deep neu-
ral networks. To establish a sufficiently large training dataset
for multi-speaker ASR, speech data synthesis based on a vo-
cal tract model was used. In another clinical speech domain,
some researchers have analyzed for aphasic speech with ASR
using a large-scale aphasic speech corpus [18, 19]. These re-
searches used databases that include mainly English speakers.
However, there is no publicly-available database with speech
data obtained from Japanese speakers. Therefore, establishing
an ASR for Japanese speakers with articulation disorders is very
challenging.

Metric learning learns a metric function from training data
to calculate the similarity or distance between samples. There
are two main approaches being taken in this research: ap-
proaches that use an intermediate layer in a multi-class classifier
as an embedding [20] and those that learn an embedding di-
rectly [7]. These methods have shown successful improvement
for face recognition. Among them, in this work, we employ ap-
proaches based on an angular margin penalty [8, 21, 22]. These
approaches train a classification network where the weights in
the last fully-connected layer represent the basis of each class.
During training, a penalty is added to the correct class output.
The model then tries to estimate the correct output class that
overcomes the penalty. This mechanism leads to an improve-
ment in the discriminative power of the trained model and use-
ful embedding for various tasks [23, 24]. In our task, we ex-
pect that the trained model has adequate robustness for unstable
dysarthric speech.

There is the problem of limited data availability associated
with dysarthric speech. To construct an ASR system that works
well for dysarthric speech, it is necessary to compensate for the
low availability of training data. There are two main approaches
being researched: voice conversion and transfer learning. Voice
conversion (VC) is a technique for converting the specific in-
formation in speech while maintaining the other information in
the utterance. VC has been applied to increase the intelligibility
of dysarthric speech [25, 26] or to generate pseudo-dysarthric
speech for data augmentation [27, 28]. However, in such a
conversion-based approach, the performance of ASR depends
on the quality of the generated speech. Transfer learning is
a technique [29] that seeks to apply the knowledge learned in
one or more domains or tasks to another domain or task. Some
studies have shown that using the data of physically unimpaired

persons boosts recognition performance [9, 30]. This approach
is advantageous because we can use real speech that is not de-
graded to train the model. Therefore, we also combine our pro-
posed method with transfer learning to further improvements.

3. Proposed method
In this work, we employ the additive angular margin loss (Ar-
cFace) function [8] as our deep metric learning method. This
method has the advantages of achieving remarkable perfor-
mance and being easy to implement. Moreover, as ArcFace
does not require any additional parameters, it is favored in low-
resource scenarios, such as ASR for dysarthric speech.

3.1. ArcFace

ArcFace is defined in the last fully-connected layer. Given an
embedding feature fi = f(xi) ∈ RK and the weight wj ∈ RK

in the last fully-connected layer, we normalize these vectors as
f ′ = f

||f || and w′ = w
||w|| . Here, K is the number of dimen-

sions of the embedding feature. The cosine similarity between
the embedding feature and the weight is equal the dot product
between f ′ and w′ as follows:

cos θij =
wT

j fi

||wj || ||fi||
= w′T

j f ′
i , (1)

where i and j denote the i-th sample in a batch and the j-th col-
umn vector of the weight matrix W = [w1, ..., wJ ] ∈ RK×J ,
respectively. J indicates the number of classes. θij is the an-
gle between the weight wj and the feature fi. ArcFace adds
an additive angular margin penalty m between fi and wli to
simultaneously enhance the intra-class compactness and inter-
class discrepancy. Here, li is the class to which fi belongs. The
ArcFace loss function is defined as follows:

− 1

N

N∑
i=1

log
es cos (θili

+m)

es cos (θili
+m) +

∑J
j=1,j ̸=li

es cos θij
, (2)

where N and s are the batch size and a re-scale parameter, re-
spectively. θij can be calculated by the arc-cosine function. Fi-
nally, the ArcFace loss can be written as a cross entropy loss
function. As ArcFace does not require any other loss functions
or constraints, the training is extremely stable. (For more de-
tails, see [8].)

3.2. Application to dysarthric speech recognition

In this paper, we apply deep metric learning for dysarthric ASR
in order to obtain a robust model for the variation of dysarthric
speech. Deep metric learning provides a smaller intra-class
variation of the embedding feature and thus improves the dis-
criminative power of the model.

Our model consists of two parts: an encoder and a clas-
sifier, as depicted in Fig. 2. The encoder is a stacked pyra-
mid bidirectional long short-term memory (pBLSTM) [31].
The pyramid structure reduces the computational complexity
and the convergence time, and allows the subsequent mod-
ule to extract the relevant information from a smaller num-
ber of time steps. The encoder transforms an input sequence
x = (x1, ..., xt, ..., xT ) of acoustic features into a high-level
representation h = (h1, ..., hu, ..., hU ), where xt, hu, T and
U ≤ T are the input acoustic feature frame, the encoder out-
put feature, the number of the input acoustic features, and the
number of the encoder output features, respectively.
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Figure 2: Overview of our proposed method.

We get the embedding by summing the encoded features
over the time axis as f =

∑U
u=1 hu. The classifier is a fully-

connected layer to estimate the corresponding word label. Then,
the ArcFace loss function is calculated from the embedding fea-
ture f using Eq. (2). During testing, we use this model to gen-
erate the probability of a word as setting the margin m to zero.

4. Experiments
4.1. Conditions

Our proposed approach was evaluated on a word-recognition
task carried out on five Japanese-speaking males with athetoid-
type cerebral palsy. For each subject, we recorded 216
phonetically-balanced words that are listed in the ATR Japanese
speech database [32]. Each word was continuously and repeat-
edly uttered three or five times by the subject. (The number of
repetitions varies depending on the symptoms of each subject,
as shown in Table 1.) In our experiments, the first utterances
of every word were used for evaluation, and the other utter-
ances (e.g., 1,080 - 216 = 864 utterances for JM3) were used
to train a model 1. When we trained modules, we used only
the single speaker’s speech. In other words, for each Japanese
dysarthric subject, we trained the speaker-dependent model and
evaluated the model independently. We used 39-dimensional
mel-frequency cepstral coefficient (MFCC) features (13-order
MFCCs, their delta, and acceleration) as the input features,
computed every 10ms over a 25ms window. The margin m and
the re-scaling parameter s were set to 0.5 and 30, respectively.

1When the dysarthric person with athetoid-type cerebral palsy utters
the same word repeatedly, the first utterance, in particular, tends to be
unstable and difficult to recognize [33]. This is because the athetoid
symptoms often occur when he/she is starting to speak. Since the ASR
system should recognize the speech correctly without any retries, we
target the first utterance to evaluate the ASR performance.

Table 1: Dataset statistics of Japanese people with the articula-
tion disorder.

Speaker # words # repetitions # utterances
JM1 204 3 612
JM2 210 5 1,050
JM3 216 5 1,080
JM4 215 3 645
JM5 213 3 639

Table 2: Word recognition accuracy [%] for each speaker using
the speaker-independent GMM-HMM.

JM1 JM2 JM3 JM4 JM5
10.8 4.3 7.0 1.4 1.9

For the baseline system, we trained the monophone-hidden
Markov models (54 phonemes) with 3 states and 6 mixtures
of Gaussians (‘GMM-HMM’). To evaluate the effect of Arc-
Face, we also trained the model using the traditional softmax
loss. Considering the network configuration, we used 2 lay-
ers of 512 pBLSTM nodes (256 nodes per direction) and the
final fully-connected layer (216 nodes). The output dimension-
ality was 216. The network was optimized using an Adam opti-
mizer [34]. The batch size was 1, and the learning rate was set
to 1e-4. When training models from the random initialization,
the number of epochs was 50.

4.2. Preliminary experiment

Our recorded dataset described in section 4.1 does not include
a pathologist’s assessment of the speaker’s symptom severity.
Therefore, instead of an assessment by a pathologist, to show
how the speaking styles of the evaluated five subjects differ
from those of physically unimpaired (PU) people, we evaluate
the ASR performance of each subject on a speaker-independent
GMM-HMM-based ASR system trained using the speech of PU
persons. The training data for this system consists of 216 words
from 9 PU speakers (five males and four females) recorded in
the ATR database (216 × 9 = 1,944 utterances in total). Table 2
shows the word-recognition accuracy of each subject. In our
evaluation of recognizing the utterances of a physically unim-
paired male, the word-recognition accuracy was 99.0%. How-
ever, as shown in table 2, we found that this model can hardly
recognize the speech of the subjects in the experiment. This re-
sult indicates that the speaking styles of those subjects are quite
different from those of PU people, and, therefore, it supports
our motivation to employ a speaker-dependent ASR system for
the dysarthric person.

4.3. Results and discussion

We confirmed the performance of the model trained on the
speech data of the target dysarthric subject. Fig. 3 shows the
word recognition accuracy corresponding to each method. In
this figure, a higher value means a better result. In our pre-
liminary experiment, in the case of a physically unimpaired
person, softmax loss attains an accuracy of 98.61%. Our pro-
posed method using ArcFace achieved relative improvements
of 33.8% and 55.9% on average compared with the traditional
GMM-HMM-based model and the model trained on the soft-
max loss, respectively. This is because that the ArcFace loss
improves the discriminative power of the ASR model while
keeping the amount of parameters. We visualized examples
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Figure 3: Word recognition accuracy for each method.

(a) Softmax (b) ArcFace

Figure 4: Visualization of embedding features trained from the
data of speaker JM3 using principal component analysis.The
difference in color corresponds to the difference in class (word).
We depicted samples of only ten classes in whole of 216 classes
for simplicity. Each class has four samples.

of learned embeddings as shown in Fig. 4. In the case of the
softmax loss, embeddings are chaotically distributed without
making any clusters. This is because there is no discrimina-
tive constraint. In contrast, we can see that the embeddings on
ArcFace are clearly separated for each class. This figure shows
that the ArcFace loss makes the embedding more discrimina-
tive. These results show that metric learning is especially effec-
tive for dysarthric ASR.

4.4. Transfer learning from the speech data of physically
unimpaired persons

As shown in Fig. 3, we also found that the DNN with softmax
loss showed lower accuracies than GMM-HMM. In general,
DNN-based models require larger training data than GMM-
based models. Therefore, it can be considered that the training
data is insufficient to achieve the full potential of DNN-based
models. However, in the real situation, it is difficult to col-
lect sufficient training data from the target dysarthric speaker.
To investigate this issue, we evaluate the DNN-based models
by combining them with transfer learning approach [29] from
the speech data of PU persons. In our previous work [35], we
have shown that the speech data of PU persons can be of help
in training the model efficiently. In this work, we pre-train a
model using the speech data of PU persons, and then, for each
dysarthric subject, we fine-tune it using the subject’s speech.

In the experiment, the speech data of five PU males and
five PU females were used to train the initial model for trans-
fer learning. Their speech is stored in the ATR Japanese speech
database. For each speaker, we used the same 216 words as
those uttered by dysarthric subjects. When we pre-trained mod-
ules using the speech of PU persons, we used all the speakers’
speech. The number of epochs of fine-tuning was 10.

The results of transfer learning from the speech data of PU
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Figure 5: Word recognition accuracy [%] for each method using
transfer learning.

Table 3: Average word recognition accuracy [%] for each
method with or without the final fully-connected layer update.

Method Random init. Transfer learning
w/ update w/o update

Softmax 63.28 67.80 68.94
ArcFace 82.07 89.79 87.89

persons are shown in Fig. 5. The model trained by the ArcFace
loss outperforms the model trained by the softmax loss. These
results indicate that the knowledge transferred from the speech
data of PU persons is informative for dysarthric ASR.

In a previous work [36] on dysarthric ASR, fine-tuning
while fixing the final layer achieved superior performance com-
pared to fine-tuning the entire network. Table 3 shows the word
recognition accuracy using transfer learning with or without the
final layer update. In the case of the softmax loss, fine-tuning
without updating the final layer improved the accuracy com-
pared to updating all layers. However, fine-tuning on ArcFace
without updating the final layer showed slightly lower perfor-
mance. We guess that this is because it is difficult to make the
margin between embeddings due to the fixing of the weight in
the final layer.

5. Conclusions
In this paper, we propose the deep metric learning-based ASR
system for people with an articulation disorder. Compared
to the traditional softmax loss function, our proposed method
makes it possible to alleviate the intra-class variation problem
of dysarthric speech, and to improve the word-recognition per-
formance. Additionally, we also evaluated the combination of
our proposed method with transfer learning. Experimental re-
sults show that transfer learning using additional speech data
from a physically unimpaired person, further improves perfor-
mance.

In this study, we constructed a speaker-dependent system.
In future work, we will work on a speaker-independent sys-
tem for dysarthric speech and study how it can be put to prac-
tical use. Moreover, our future work includes the evalua-
tion of our proposed method on non-Japanese dysarthric cor-
pora [10, 11, 12], in addition to the investigation of continu-
ous speech recognition. Deep metric learning could be applied
to few-shot learning [37] where a classifier generalizes to new
classes using only a small number of examples of each new
class. In the future, we will further investigate the potential of
our proposed method, focusing on an unknown word.
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