
Staged Knowledge Distillation for End-to-End Dysarthric Speech Recognition
and Speech Attribute Transcription

Yuqin Lin1, Longbiao Wang1∗, Sheng Li2, Jianwu Dang1,3∗, Chenchen Ding2

1Tianjin Key Laboratory of Cognitive Computing and Application,
College of Intelligence and Computing, Tianjin University, Tianjin, China

2National Institute of Information and Communications Technology (NICT), Kyoto, Japan
3Japan Advanced Institute of Science and Technology, Ishikawa, Japan

longbiao wang@tju.edu.cn,jdang@jaist.ac.jp

Abstract
This study proposes a staged knowledge distillation method to
build End-to-End (E2E) automatic speech recognition (ASR)
and automatic speech attribute transcription (ASAT) systems
for patients with dysarthria caused by either cerebral palsy (CP)
or amyotrophic lateral sclerosis (ALS). Compared with tradi-
tional methods, our proposed method can use limited dysarthric
speech more effectively. And the dysarthric E2E-ASR and
ASAT systems enhanced by the proposed method can achieve
38.28% relative phone error rate (PER%) reduction and 48.33%
relative attribute detection error rate (DER%) reduction over
their baselines respectively on the TORGO dataset. The exper-
iments show that our system offers potential as a rehabilitation
tool and medical diagnostic aid.
Index Terms: knowledge distillation, dysarthric speech recog-
nition, articulatory attribute detection, End-to-End

1. Introduction
The development of artificial intelligence contributes to improv-
ing the quality of our lives. In recent years, automatic speech
recognition (ASR) systems have become popular and widely
used for services such as personal assistance on smartphones,
home control via smart speakers, etc. People free their hands
and eyes and make their lives more convenient by replacing
them with voice. Obviously, these services are icing on the cake
for common people. However, dysarthria patients cannot ben-
efit from any of today’s voice assistance services. Dysarthria
is a category of motor speech disorder associated with muscu-
lar weakness [1, 2], including many different types of disorders
such as cerebral palsy (CP) [3]. This condition is caused by dis-
ruptions of the motor-speech system and characterized by poor
pronunciation [4, 5, 6]. Moreover, the diseases causing poten-
tial physical disabilities make patients’ lives inconvenient. The
need for an ASR system for faster communication and easier
access to services is suggested [7]. Therefore, a specialized
dysarthria intelligent voice system must provide timely assis-
tance for patients.

ASR is one of the most prevalent intelligent voice sys-
tems. There are two challenges to the study of automatic
dysarthric speech recognition (dysarthric ASR). First, the pa-
tients’ pronunciation differs from that of healthy people due to
their speech disorders, and these differences lead to personal-
ized manners of pronunciation [5, 8]. Hence, the ASR systems
for healthy people are not suitable for dysarthria patients. Fur-
thermore, muscular weakness causes the patients to overburden
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their speech muscles during pronunciation [5, 9]. For this rea-
son, the limited resources of dysarthric speech make it difficult
to train an effective dysarthric ASR system.

Automatic speech attribute transcription (ASAT) is another
useful intelligent voice system. It can be used for patient reha-
bilitation training [10]. Articulatory attributes describe speech
production features. In previous studies, although many detec-
tors have been studied to generate attributes, they still face the
challenge of low resources, as with dysarthric ASR. Lin et al.
[11] reports that using well-performing End-to-End (E2E) sys-
tems is one effective way to further improve the performance of
ASAT.

In recent years, two main approaches have been utilized to
overcome the limited resources challenge. One is voice con-
version (VC), which transforms dysarthric speech into normal
speech for data augmentation [12, 13], and the other is to im-
prove the training strategy for limited ASR resources, such as
by using multiple databases [5], by joint articulatory and acous-
tic features [14], by using finetuning techniques [15], and so
on. However, disadvantages still exist for these state-of-the-art
approaches: VC requires sufficient dysarthric speech data, and
the improved training strategies are usually effective for voice
systems with limited resources, but not for dysarthric voice sys-
tems. In the latest study, staged training has been shown to be
effective for dysarthric speech [16].

This paper focus on patients with CP and amyotrophic lat-
eral sclerosis (ALS), which are two of the most prevalent causes
of dysarthria [3]. The acoustic model is based on a recent
competitive End-to-End ASR framework called Speech Trans-
former [17]. The present work investigates the knowledge dis-
tillation method [18] and proposes staged conditional teacher-
student learning to overcome the challenge of limited resources.
The proposed knowledge distillation-based E2E Modeling is
applied to enhance the dysarthric ASR and ASAT tasks.

The rest of this paper is organized as follows. Section 2 de-
scribes our proposed method. Section 3 gives a data description
and experiment evaluations. Conclusion and future work are
given in Section 4.

2. Knowledge Distillation-based E2E
Modeling for Dysarthric ASR and ASAT

2.1. Knowledge Distillation-based Dysarthric E2E-ASR

Speech Transformer [17, 19] is a sequence-to-sequence
attention-based model and it has been demonstrated to perform
effectively in ASR [19]. The staged teacher-student learning
method is proposed to overcome the limited resource challenge
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mentioned in Section 1.
Teacher-student learning/knowledge distillation is a com-

pression framework [20]. It trains a compact student network
using the output of a high-performance teacher network as soft
labels for knowledge transfers. The student network can explore
not only the information provided by the ground truth but also
the knowledge learned by the teacher network.

Given input speech features X = {x1, ...xL} with L
length, and ground truth Y = {y1, ..., yN} with N length, the
teacher network is trained by optimizing the loss between the
ground truth Y and the output softmax of the teacher Ot =
{ot

1, ..., o
t
N} ∈ RN×D . D is the number of target classes.

In conditional teacher-student learning [18], the student net-
work is trained to learn from selected labels, that is made up of
the ground truth (hard labels) Y, and the outputs softmax of the
teacher network (soft labels) Ot. The loss function is defined
between the selected labels and the outputs softmax of the stu-
dent network (predicted label) Os = {os

1, ..., o
s
N} os

i ∈ RN×D .
However, this approach is ineffective when the resources of data
are limited as in dysarthric speech. To make a full use of limited
data resources, a staged training strategy is adopted. The latest
study in [16] shows staged training (first adapted to multiple
dysarthric speakers, and then to the target speaker) is effective
for dysarthric speech. Different from [16], the student model in
our method is first adapted to the mixture of multiple dysarthric
and common speakers, and then the adapted model is further
adapted for the target dysarthric speakers.

The selected labels are defined differently at different
stages. In the first stage, the selected labels are made up of
the hard labels Y and soft labels Ot. In the second stage, the
selected labels are made up of the hard labels Y and predicted
labels Os. The specific definition is as follows:

ỹi(oi) =


oi, arg max

j∈{1,2,...,D}
oi,j = arg max

k∈{1,2,..,D}
yi,k

yi, otherwise

(1)

where oi represents the i-th output softmax of the teacher net-
work or student network. That is to say, the student at first learns
knowledge from both the teacher and ground truth and then fo-
cuses on the more difficult aspects when it has learned most of
the knowledge.

A boundary value λ is introduced to divide the two stages.
The training process enters the second stage when the predic-
tion accuracy of the student network is higher than λ. In brief,
the student network is trained to optimize the following loss
function:

LTS =


− 1

N

N∑
i=1

D∑
j=1

ỹi,j(o
t
i) log os

i , acc ≤ λ

− 1
N

N∑
i=1

D∑
j=1

ỹi,j(o
s
i ) log os

i , otherwise

(2)

acci =

{
1, arg max

j∈{1,2,...,D}
os
i,j = arg max

k∈{1,2,...,D}
yi,k

0, otherwise
(3)

acc =
1

N

N∑
i=1

acci (4)

where λ is the tunable tradeoff parameter.

2.2. Knowledge Distillation-based Dysarthric E2E-ASAT

Table 1: English consonant list with manner (row) and place
(column) attributes

L
abial

(L)

D
ental

(D)
A

lveolar

(R)

Post-alveolar

(P)

Palatal

(T)

V
elar

(V)

G
lottal

(G)

Plosives (p) p / b t / d k / g

Affricates (a) /

Nasals (n) - / m - / n - /

Fricatives (f ) f / v / s / z / h / -

Approximants (x) - / r - / j - / w

Laterals (l) - / l

* Phonemes beside/are: -Voiced (s) / +Voiced (v). Both -Voiced and
+Voiced are voicing attributes.

Figure 1: Schematic diagram of English vowels with attributes

Figure 2: Flowcharts of two E2E-ASAT methods (APL and E2E)

In this paper, the proposed knowledge distillation-based
modeling in Subsection 2.1 is also applied to enhance the
dysarthric E2E-ASAT methods proposed in [11].

As a brief review, phonemes are transcribed into the ar-
ticulatory attributes by using the mapping rules according to
[11, 21, 22, 23]. Table 1 and Figure 1 show the mapping rules
for consonants and vowels, respectively. In these rules, each
consonant has two manner attributes (manner of articulation and
voicing), along with one place attribute, and each vowel has
three place attributes. Diphthongs are regarded as sets of two
monophthongs. Considering the poor mobility of the patient’s
tongue, we classify tongue-high and tongue-mid as -Open (no)
attribute and classify tongue-low as +Open (o) attribute. In ad-
dition, the front positioning of the tongue is classified as -Back
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(nb) attribute, and the central or back positioning is classified
as +Back (b) attribute.

In order to detect the articulatory attributes of patients’
speech, two E2E-ASAT methods are proposed in [11], as shown
in Figure 2.

1. APL approach: Reuse a well-performed phone-level
ASR system. The phone-level ASR result is mapped
to articulatory attributes according to the phoneme-
attribute mapping rules in Table 1 and Figure 1.

2. E2E approach: Directly map the acoustic features to ar-
ticulatory attributes.

In this paper, the proposed knowledge distillation-based
modeling is also applied to enhance these two dysarthric E2E-
ASATs.

3. Experiments
3.1. Experimental Setups

The TORGO database [24] and Librispeech corpus [25] are
used in this experiment. All the data sets are for the English
speech recognition task. Speech files in the TORGO database
are recorded by a microphone array and a head-worn micro-
phone with a 16kHz sampling rate. This database contains the
speech data obtained from seven patients and seven healthy con-
trol speakers (4 males and 3 females). All the patients in this
database were diagnosed with varying degrees of CP or ALS.
The Librispeech corpus we use in this paper contains approx-
imately 600 hours of English speech read by healthy speakers
and sampled at a rate of 16kHz.

All the models are pre-trained with 500-hour normal speech
from the Librispeech corpus. For retraining, due to the lim-
ited resources of dysarthric speech, we use all speech samples
in the TORGO database, which contains 2 hours of dysarthric
speech (2 males and 1 female) and 4 hours of normal speech
(4 males). When evaluating the models, we used another 1
hour of dysarthric speech (2 males and 2 females) from the
TORGO database. The other 100-hour normal speech from the
Librispeech corpus (100h-Libri) is used for data augmentation.

Table 2: Data set for dysarthric speech recognition

Dataset Speech Hours Utterances

Training Librispeech (Libri) 600 63,799
TORGO (T-train) 6 6,484

Testing TORGO (T-test) 1 1,207

The input features are 120-dimensional log Mel-filterbank
energy features (40-dim static, +∆, and +∆∆) Each feature was
mean- and variance-normalized, and every four frames were
spliced (three left, one current and zero right). The lower and
higher cutoff frequencies were set to 20 Hz and 8,000 Hz, re-
spectively. To augment the training data, the standard 3-way
speed-perturbation with factors of 0.9, 1.0 and 1.1 [26] was used
in the fine-tuning stage.

All of the experiments are used for the implementation of
the Transformer-based machine translation (NMT-Transformer)
[27] in tensor2tensor 1. The training and testing settings are
similar to those in [21].

1https://github.com/tensorflow/tensor2tensor

3.2. Speech Recognition Evaluation

In Table 3, the effectiveness of the proposed staged conditional
teacher-student method (TS2) for limited data resources are
shown, together with a series of the systems (S1 to S4) and their
ASR performance based on the phoneme error rate (PER%)
for comparison. Additionally, the conditional teacher-student
learning proposed by [18] (TS1) is used for comparison.

S1: The full net is fine-tuned (ft-full).

S2: The data augmentation with 100h-Libri (+DA) are
adopted, and the full net is fine-tuned.

S3: Only the decoder is fine-tuned (ft-decoder).

S4: The model is refactored (refactor) [11]. The layers in the
decoder are shared [28], and the parameters of the shared
layers are fine-tuned by using all the speech data from the
TORGO database with speech perturbation (sp).

TS1: The conditional teacher-student learning proposed by
[18] (TS1). The teacher model is a data-augmentation
model (S2) or refactoring model (S4), and the student
model is a refactored model trained by using all the
speech from the TORGO database with speed perturba-
tion (sp).

TS2: The proposed staged teacher-student learning (TS2).
The same teacher, student model, and training data are
used as TS1. The tunable tradeoff parameter λ is set to
0.95.

Table 3: Phone error rate (PER%) of all methods for limited
data resources

Methods Training data PER%

S1 (ft-full, baseline) [11] T-train 48.35
S2 (ft-full + DA) [11] T-train + 100h-Libri 45.57
S3 (ft-decoder) [11] T-train 39.53
S4 (Refactor) [11] T-train 35.19

T-train (+sp) 31.03

TS1-DA (TS1 + Teacher:S2) T-train (+sp) 30.76
TS1-R (TS1 + Teacher:S4) T-train (+sp) 32.40
TS2-DA (TS2 + Teacher:S2) T-train (+sp) 29.84
TS2-R (TS2 + Teacher:S4) T-train (+sp) 31.42

From the results (S1 to S4) in Table 3, the DA is not as ef-
fective when compared with other methods (especially the ft-
decoder) because the large quantity of training data requires
time. The model-refactoring method (S4) is a more effective
method than the traditional method (S1 to S3). And the pro-
posed staged conditional teacher-student learning method (TS2-
DA) is relatively improved by 38.28% compared with the base-
line (S1) and by 2.99% compared with traditional conditional
teacher-student learning methods (TS1-DA).

Experimental results in Table 4 prove the effectiveness of
the proposed method by evaluating the phone error rate (PER%)
for the four patients (F01, F02 are female; M01, M02 are male.)
included in the test set. Further more, the significant difference
between the baseline method (S1) and the proposed method
(TS2-DA) at the level of 0.01 are shown.
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Table 4: Phone error rate (PER%) of both baseline (S1) and the
proposed method (TS2-DA) on four patients. Bold means there
is no significant difference between the performance of the two
methods, otherwise there is a significant difference between that
of these two methods.

Errors type

Patients Overall Substitution Insertion Deletion

F01 50.17 26.89 21.07 10.31 9.49 9.76 19.60 6.80
F02 33.59 15.62 14.81 4.80 7.04 4.92 11.73 5.88
M01 56.06 35.98 24.17 18.32 6.51 8.73 25.36 8.92
M02 50.92 28.32 23.83 12.48 10.37 9.10 16.71 6.72

* PERs beside | are: baseline (S1) | proposed (TS2-DA).

Table 5: Detection error rate (DER%) of individual attribute
types for the five systems

Method Overall Vowels Consonants

APL-baseline 34.86 31.00 35.64
APL-S4 19.35 15.06 20.49
APL-TS 18.01 14.24 19.60

E2E-S4 19.25 14.93 20.30
E2E-TS 19.70 15.45 20.78

Combined 14.35 10.88 15.77

3.3. Evaluation of Articulatory Attribute Detection

Table 5 compares the overall attribute detection error rates
(DER%) of two E2E-ASATs (APL and E2E introduced in Sub-
section 2.2) as well as the DER% of the system that combines
APL and E2E systems with ROVER [29]. All the models are
trained with the model-refactoring approach for low-resourced
data and proposed staged teacher-student (TS2) learning meth-
ods. The APL-baseline and APL-S4 map phonemes produced
by S1 and S4 with the whole TORGO database (+sp), respec-
tively. The proposed TS2 method (APL-TS) improved the APL-
baseline model by 48.33% of relative DER%. The combined
system performs better than any individual system, and is used
for the study the patterns of patient pronunciation in what fol-
lows.

Figure 3: Confusion matrices of consonants with place at-
tributes: Labial (L), Dental (D), Alveolar (R), Post-alveolar (P),
Palatal (T), Velar (V), Glottal (G), Blank (*)

Figure 3 and Figure 4 are the normalized confusion matri-
ces of consonant attributes from the combined attribute detec-
tion system. The asterisk (*) in the figures indicates the blank.

Figure 4: Confusion matrices of consonants with manner at-
tributes: Plosives (p), Affricates (a), Fricatives (f), Nasal (n), Approx-
imants (x), Laterals (l), Voiced (v), Voiceless (s), Blank (*)

The row with the asterisk indicates insertion errors, and the col-
umn with the asterisk indicates deletion errors. From these con-
fusion matrices, the proposed TS2 enhanced E2E-ASAT (com-
bined in Table 5) is more accurate than the traditional methods
in articulatory attribute detection (APL-baseline in Table 5).

Furthermore, we obtain the following summaries:

1) The sounds with dentals (D) and glottals (G) are more
laborious for dysarthric patients.

2) Affricates (a) and laterals (l) are more laborious than
other consonants for dysarthric patients. Voiceless
consonants are easier for them.

3) Pronunciations are closely related to articulatory move-
ment of the tongue. The tongue moves from high to
low positions in the sounds with dentals (D), alveolars
(R), post-alveolars (P), palatal (T), and velar (V). From
the matrices, dysarthric patients tend to articulate with
centralized tongue positions, and it is difficult for them
to produce sounds with extreme positions of the tongue.

Above all, these findings can be used for mispronunciation
detection in patients with dysarthria.

4. Conclusion and Future Work
This paper proposed an effective staged teacher-student learn-
ing to tackle the low resource challenge in training End-to-
End (E2E) voice systems (ASR and ASAT) for patients with
dysarthria. The accuracy of our proposed models (knowledge
distillation-based dysarthric E2E ASR and ASAT) significantly
outperforms the traditional methods. Furthermore, the higher
precision of E2E-ASAT offers potential functions as a rehabili-
tation tool and medical diagnostic aid. In the future, we will im-
prove our dysarthric E2E ASR and ASAT systems with larger
data sets and use them as comprehensive tools for effective anal-
ysis and evaluation of dysarthric speech.
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