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Abstract
Individuals who undergo a laryngectomy lose their ability to
phonate. Yet current treatment options allow alaryngeal speech,
they struggle in their daily communication and social life due to
the low intelligibility of their speech. In this paper, we presented
two conversion methods for increasing intelligibility and natu-
ralness of speech produced by laryngectomees (LAR). The first
method used a deep neural network for predicting binary voic-
ing/unvoicing or the degree of aperiodicity. The second method
used a conditional generative adversarial network to learn the
mapping from LAR speech spectra to clearly-articulated speech
spectra. We also created a synthetic fundamental frequency tra-
jectory with an intonation model consisting of phrase and accent
curves. For the two conversion methods, we showed that adap-
tation always increased the performance of pre-trained models,
objectively. In subjective testing involving four LAR speakers,
we significantly improved the naturalness of two speakers, and
we also significantly improved the intelligibility of one speaker.
Index Terms: speech intelligibility, voice conversion, total la-
ryngectomy

1. Introduction
Speech is arguably the most important biosignal for human
communication. Pressure from the lungs drives typical laryn-
geal voice and speech. The pharynx, tongue, and lips shape
exhaled air to produce voiceless sounds, and quasiperiodic vo-
cal fold vibration creates the sound wave that vocal tract con-
strictions shape into vowels and voiced consonants. Individu-
als who undergo a laryngectomy lose their ability to produce
speech sounds normally because their trachea is disconnected
from the vocal tract. Laryngectomy is performed as surgical
treatment for advanced laryngeal and hypopharyngeal cancers.
These patients experience a lower quality of life because of their
atypical speech (we term this as LAR speech) during social in-
teractions, as they believe that other people perceive them as
abnormal, or they directly experience symbolic violence [1]. In
2020, an estimated 12,370 new cases of laryngeal cancers are
expected in the U. S. [2]. Although the incidence of laryngeal
cancers is decreasing due to the decreasing number of smok-
ers, there is still a large projected number in the next decades
because the rate of decrease is only 2–3% [2].

There are currently a limited number of alternative commu-
nication options for laryngectomees. Typing-based alternative
and augmentative communication (AAC) devices are slow and
limited by the speed of typing. The main speech options for in-
dividuals after laryngectomy are (1) esophageal speech (push-
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ing air from the mouth to the pharyngo-esophageal segment
(PES) and using the PES for vibration), (2) tracheo-esophageal
puncture (TEP) speech wherein speakers use lung air to power
PES vibration for voiced speech, and (3) use of an artificial lar-
ynx, in the form of either an external electrolarynx placed on
the neck (ELX) or with an intraoral tube. The ELX generates
an electronic sound source that is shaped by the lips and tongue
into always-voiced speech at a constant pitch [3]. These options
are suboptimal: esophageal speech requires extensive training
and practice and is difficult to learn [4], TEP is a surgical oper-
ation and requires talkers to place their thumb over their stoma
during the speech act, which is rarely hands-free and poses
certain risks, and the artificial larynx produces a very robotic-
like sounding voice. All options produce unnatural sounding
and difficult to understand speech for several reasons, including
poor voice quality, voiced/voiceless differentiation, and articu-
latory precision [5, 6].

Voice conversion (VC) can be used to alter and improve
LAR speech. In this paper, we aim to increase the intelligi-
bility and naturalness of LAR speech, by applying three in-
novative methods: (1) predicting binary voicing/unvoicing and
the degree of aperiodicity parameters, as used by the WORLD
vocoder [7, 8], (2) improving the spectral characteristics by
mapping from LAR to clearly-articulated speech (CLR), and
(3) creating a suitable F0 trajectory (see Figure 1).

2. Related Work
For two decades, researchers have attempted to create natural-
sounding speech for laryngectomees. Using rule-based spectral
VC approaches, some differences between alaryngeal speech
and normal speech can be compensated for by modifying
speech formant properties. For example, in an early work, the
authors made esophageal speech more intelligible by expanding
the formant bandwidths [9]. Another approach is to decrease
formants’ frequencies using formant shifting methods [10, 11],
since it was found that speakers who underwent partial laryn-
gectomy shift their formants to higher frequencies due to the
shortened vocal tract length [12]. Similarly, TEP speech is re-
ported to have a spectral tilt which favors the high frequency
band [13]; thus, the authors used a 6 dB/octave roll-off filter to
de-emphasize the high frequency band. These approaches led
to limited improvement in intelligibility or naturalness.

For statistical VC, previous approaches included the use
of Gaussian mixture models [14, 15] and deep neural net-
works [16, 17] for mapping spectral features. These models are
limited because of over-smoothing of converted spectra, lead-
ing to muffled speech [18, 19]. Recently, generative adversarial
networks (GANs) [20] have been shown effectively address the
over-smoothing problem in VC [19] and speech synthesis [21].
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Figure 1: Flowchart of approach during prediction

The LAR-to-CLR spectral mapping can be viewed as an image-
to-image translation task, in which the image is a window of
the time-frequency representation of speech. In image-to-image
translation, a conditional GAN (cGAN) [22] proved to be effec-
tive in generating less blurry images by combining a traditional
adversarial loss and a mean absolute reconstruction loss (or L1
loss). In this paper, we leverage the cGAN architecture for map-
ping LAR features to CLR features.

Generally, LAR speech lacks reliable voicing and funda-
mental frequency (F0) information, but also meaningful F0 vari-
ability. One approach used to produce a more natural sounding
speech signal is therefore to create converted or synthetic voic-
ing and F0 trajectories. In related work on reconstructing nor-
mal speech from whispered speech, F0 values were estimated
from filtered gain parameters [23] or using the first formant fre-
quency and its magnitude [24].

For F0 conversion or synthesis, a variety of approaches have
been proposed. The introduction of jitter (small pitch perturba-
tions) was found to reduce the artificiality of ELX speech [25].
Another approach created an artificial pitch contour by means
of filtering, scaling and offsetting the energy envelope [10]. Al-
ternatively, the F0 trajectory can be generated using formant fre-
quencies as well as gains from a linear prediction model [26].
In a third approach, TEP speech is first converted to whispered
speech, and then an F0 trajectory was synthesized by adding a
normalized short-term energy contour of the whispered speech
to an average pitch when the energy value is greater than a
threshold [27]. In the paper, we directly use the normalized
short-term energy contour of LAR speech in combination with
a simple intonation model to synthesize the final F0 trajectory.

3. Data
For the source LAR speech, we used a database of 4 male speak-
ers consisting of 3 LAR-TEP speakers (L001, L002, L006) and
1 LAR-ELX speaker (L004); the average age was 61.75±8.77.
The speakers underwent total laryngectomy. The pitch of the
LAR-TEP speech is low and highly-variable, and voicing corre-
lates largely with energy. Speech analysis using standard voic-
ing and fundamental frequency (F0) analysis algorithms fail for
this type of speech the majority of the time. The LAR-ELX
speech is always voiced with a constant F0 (80 Hz in our case).
All speakers read all sentences of the AAC132 list [28]. For
the target CLR speech, we created a synthetic male voice using
Tacotron 2 [29] with the Waveglow vocoder [30]. We created
utterances to match those of the source. The database was di-
vided into 100/16/16 sentences for training/validation/testing.
All waveforms were resampled from 22.05 kHz to 16 kHz.

We also used a multi-speaker TIMIT database [31] for pre-
training. Moreover, to simulate the characteristics of LAR-TEP
and LAR-ELX speech, we also created a fully-unvoiced (FU)

TIMIT and a fully-voiced (FV) TIMIT. We used a process of
first analyzing standard normally-voiced (NV) TIMIT using the
WORLD vocoder [7, 8], then setting all frames to either un-
voiced, or voiced with all F0 values set at a constant value of
80 Hz to create FU-TIMIT and FV-TIMIT, respectively. Of the
630 available speakers we used all 462/144/24 speakers des-
ignated for training, validation, and testing, respectively. By
convention, we eliminated the spoken dialect samples (SA sen-
tences) for all speakers.

4. Predicting Voicing and Degree of Voicing
In the section, we investigated the capability of predicting voic-
ing presence and the degree of voicing. Specifically, we pre-
dicted a binary voicing value and continuous 2-band aperi-
odicity [8] values from mel-cepstral coefficients (MCEP), us-
ing deep neural networks (DNN). We used 32nd-order MCEP
(MCEP-32) features to avoid pitch effects in the spectral rep-
resentation. We pre-trained three speaker-independent DNNs
using normal, FU-, and FV-TIMIT. Then we adapted all
three models on LAR-TEP and LAR-ELX speech, to examine
whether the choice of pre-training database is important for the
two different types of LAR speech. Our motivation was based
on the hypothesis that FU-TIMIT is more similar to the un-
voiced nature of LAR-TEP speech, and FV-TIMIT is more sim-
ilar to the always voiced LAR-ELX speech (we use the terms
voiced and unvoiced from a signal analysis point of view, not a
production point of view). In addition, we also investigated how
performance is affected by different context window lengths.

4.1. Pre-training

We analyzed the NV/FU/FV-TIMIT databases using the
WORLD vocoder to obtain F0, voicing, spectrogram, and 2-
band aperiodicity parameters, for each frame, using a frame rate
of 5 ms. The voicing is a binary voiced/unvoiced flag (VUV).
The 2-band aperiodicity (AP) is a single scalar representing the
degree of voicing at 3000 Hz, which is the boundary frequency
of the two frequency bands: [0, 3000] and [3000, 8000] Hz. We
extracted MCEP-32 from the WORLD spectrogram. We ex-
cluded the zeroth coefficient (representing energy), then trained
DNNs to predict NV-TIMIT VUV or AP parameters from each
of the three NV/FU/FV-TIMIT MCEP coefficients 1–31. We
normalized inputs of the network with standard scaling. We
added context by concatenating the current frame with preced-
ing and following frames. We considered context lengths of 25,
55, and 105 ms, respectively.

The DNN has three hidden layers with 256 nodes each. The
activation function is parametric ReLU. Each hidden layer is
preceded by batch normalization (except the first layer), and
followed by dropout with a dropout rate of 0.2 (except the last
layer). We trained using the Adam optimizer, a mini-batch size
of 256, and early stopping. The binary cross entropy and mean-
squared error loss functions were used for voicing classification
and 2-band aperiodicity regression, respectively. In total, there
are 18 (3 training databases × 3 context lengths × 2 output
types) pre-trained models.

We objectively evaluated the performance of each model
using balanced accuracy (BAC, defined as average recall) for
VUV classification (since the classes were imbalanced), and
r2 for AP regression. On average, we obtained a BAC/r2 of
0.94/0.75. The results suggest that we can predict voicing and
the degree of voicing from spectral shape alone. The differ-
ent context lengths did not result in significant differences in
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Figure 2: cGAN framework for style conversion

BAC and r2. We then tested the pre-trained networks with-
out any adaptation to predict target VUV or AP from LAR-
TEP and LAR-ELX speech with 16 test sentences. We can see
that the BAC and r2 drastically decrease. We have an approx-
imate BAC/r2 of 0.60/−0.44 for L001, 0.58/−0.68 for L002,
0.49/−0.4 for L004, 0.48/−0.6 for L006.

4.2. Adaptation

We adapted the pre-trained networks to individual speakers’
LAR-TEP or LAR-ELX speech to improve performance. We
aligned each LAR utterance to its parallel target CLR utter-
ance using dynamic time warping on 32nd-order log filter bank
features. There are 72 (18 pre-trained models × 4 speakers)
adapted models. All training settings were the same as those
of pre-training. Because there were many more voiced frames
than unvoiced frames, we over-sampled the unvoiced frames to
balanced the classes. The average r2 of AP and the BAC of
VUV were ˜0.24/˜0.7 for L001, ˜0.44/0.73 for L002, ˜0.28/0.70
for L004, and ˜0.05/0.65 for L006; it appears that some speak-
ers’ AP was much easier to predict than others’, whereas VUV
prediction performance was similar. As expected, adaptation
always improved performance. Varying context size resulted in
a relatively narrow BAC range from 0.65 to 0.73, and thus we
used 55 ms from this point forward. Surprisingly, pre-training
with FU- and FV-TIMIT as opposed to NV-TIMIT did not show
improved performance.

5. Predicting Spectrum
5.1. Conditional Generative Adversarial Network

Traditional GANs have a generative model or a generator (G)
and a discriminative model or a discriminator (D), that together
play a min-max game. ComponentG tries to fool componentD
by generating outputs similar to the real data, while component
D is trained to distinguish the output of component G from
real data. Component G is a mapping function from random
noise z to y, G : {z} → y [20]. In contrast, a cGAN model
learns a mapping from an input x and random noise z to y, G :
{x, z} → y. The cGAN model has both G and D conditioned
on input x [22], trained with the objective function L(D,G):

min
G

max
D
L(D,G) = (1)

Ex,y [logD(x, y)] + Ex,z [log(1−D(x,G(x, z)))]

In our cGAN, we did not use random noise z because it has
proven ineffective for generator G [22, 32]. Instead, our gener-
ator mapped LAR speech features to aligned CLR speech fea-
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tures as shown in Figure 2. For the input vector of G, we added
context by concatenating the current LAR MCEP-32 frame with
five preceding and five following frames. We normalized the in-
puts and outputs of the network via standard scaling. The input
of D consisted of a single frame of either the output of G or
an aligned CLR feature frame, combined with the current LAR
feature frame (what we wanted the output to be conditioned on).
Thus, both G and D are conditioned on the current LAR fea-
ture frame. In addition to the adversarial loss function L(D,G)
in Equation 1, we also minimized the L1 loss between the out-
put of G and the ground truth; this addition was demonstrated
to generate less blurry output compared to a root-mean-squared
reconstruction loss in an image task [22]. We added the L1 loss
with a weighting factor of 100 to L(D,G).

The structure of the generatorG, shown in Figure 3, is sim-
ilar to our previous work [33]; however, there is no skip connec-
tion which adds the input of G to the output of its final dense
layer, because performance worsened when using the skip con-
nection. The discriminator D is a DNN with two hidden layers
with 256 nodes each, and a single-node output layer with sig-
moidal activation function. To help stabilize the training pro-
cess, we used (1) a leaky ReLU activation function with a slope
of 0.2 for negative inputs for both G and D, (2) a dropout layer
following each hidden layer of D with a dropout rate of 0.5, (3)
the Adam optimizer with a batch size of 128, and (4) weights
initialized from a zero-centered normal distribution with stan-
dard deviation 0.02 [34]. We used a momentum of 0.5, a learn-
ing rate decay of 10−5, and learning rate of 10−4 for D, and
2 · 10−4 for G.

5.2. Predicting spectrum

We first pre-trained the cGAN with the methods described
above to convert FU- and FV-TIMIT MCEPs to NV-TIMIT
MCEPs, excluding the zeroth (energy) coefficient (similar
to 4.1). This was a data-rich proxy for the eventual mapping of
LAR to CLR speech. There were two pre-trained models, one
for each training databases. We passed the source energy un-
modified to the target features. We then calculated the predicted
spectra and compared them to target spectra in terms of log
spectral distortion (LSD). On average, the LSDs were 7.64 and
6.46 dB for FU- and FV-TIMIT, respectively. We then tested the
pre-trained models on LAR speech, obtaining 60 dB for L001,
45 dB for L002, 51 dB for L004, and 62 dB for L006. We
then adapted the cGAN conversion to convert LAR MCEP to
CLR MCEP (similar to 4.2). There were eight adapted models
(2 pre-trained models × 4 speakers). We adapted in two ways:
adapting only the generator or adapting both the generator and
the discriminator. We observed that the latter yields lower LSD
scores. The average LSD was 32 dB for L001, 33 dB for L002,
31.6 dB for L004, and 37.4 dB for L006. As expected, the adap-
tation always increased performance. Finally, pre-training with
FU- and FV-TIMIT did not improve the results.
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6. Synthesis
For analysis and synthesis, we used the WORLD vocoder [7,
8]. We analyzed LAR speech into F0, VUV, AP, and pitch-
synchronous spectrogram, from which we derived MCEP-32
features. We predicted CLR VUV and AP using the DNN (see
Section 4), and CLR MCEPs using the cGAN (see Section 5).
The source energy was passed through unmodified. We synthe-
sized the CLR F0 from the source energy, using a method de-
scribed below. The predicted/synthetic set of CLR parameters
was used to synthesize the final speech waveform.

6.1. Synthetic pitch accent curve

We used a simple model of intonation consisting of phrase and
accent curves [35]. The phrase curve p is defined as

p(t) = pmin + (pmax − pmin)

(
1− t

T

)b

where we empirically set pmax=140, pmin=60, and b=0.5; t is a
time index between 0 and T . To set accent curve α, we used
a(t) = A · e(t) where we empirically set A=40, and e is the
max-normalized energy. The final F0 trajectory is calculated as
f0(t) = p(t)+a(t). Figure 4 shows an example of the synthetic
F0 trajectory. Informal perceptual experiments confirmed that
replacing a natural F0 trajectory with a synthetic one did not
reduce the naturalness of speech.

7. Evaluation
We evaluated the efficacy of using predicted VUV, AP, F0, and
spectrum in LAR speech in term of naturalness and intelligibil-
ity in two comparative mean opinion score (CMOS) tests. The
LAR denotes vocoded LAR speech. Informal listening tests
have shown that vocoded LAR speech is sufficiently close to
the original LAR speech in terms of intelligibility and natural-
ness. The CLR-spectrum denotes LAR speech with predicted
MCEPs. The CLR-intonation denotes LAR speech with pre-
dicted VUV, AP and F0. The CLR-all denotes predicting all
vocoder parameters except energy. We compared LAR to all
other conditions. Each of the two CMOS tests consisted of 16
sentences × 4 speakers × 3 pairs of conditions = 192 unique
trials. We limited each listener to hear each unique sentence
once (presentation order was randomized); therefore we needed
blocks of 192÷ 16 = 12 listeners to cover all trials. Both exper-
iments were conducted on Amazon Mechanical Turk (AMT);
we required listeners to have an approval rate ≥ 90% and to

naturalness CLR-spectrum CLR-intonation CLR-all

L001 (TEP) −0.0 −0.3* 0.4*

L002 (TEP) −0.1 −0.0 0.1

L004 (ELX) −0.56* −0.25 0.22

L006 (TEP) −0.3* −0.2* 0.7*

intelligibility CLR-spectrum CLR-intonation CLR-all

L001 (TEP) −0.1 −0.1 0.1

L002 (TEP) 0.1 0.2 −0.3*

L004 (ELX) −0.34* 0.34* −0.2

L006 (TEP) 0.2 −0.1 −0.0

Table 1: Perceptual CMOS test results comparing modified
conditions against the vocoded LAR speech condition. CLR-
spectrum, CLR-intonation, CLR-all denote predicting CLR
spectrum, CLR VUV/AP/F0, or a combination of these, respec-
tively. Scores marked with an asterisk are significantly different.

live in the U. S. Each test had 48 listeners, for a total of 96 lis-
teners. In each trial, participants listened to samples A and B
in sequence and were then asked: “Is A more natural than B?”
or “Is A more intelligible than B?” for the naturalness and in-
telligibility tests, respectively. Responses were selected from a
5-point scale that consisted of “definitely better” (+2), “better”
(+1), “same” (0), “worse” (−1), and “definitely worse” (−2).

Table 1 top shows the pair-wise relative naturalness of the
stimuli. Positive scores show improvement over LAR speech.
Converting VUV, AP, and MCEPs, and using synthetic F0, im-
proved the naturalness of LAR-TEP and LAR-ELX, statistically
significantly (p < 0.01) as compared to zero (no preference)
in a one-sample t-test. Table 1 bottom shows the pair-wise
relative intelligibility of the stimuli. We improved intelligibil-
ity statistically significantly (p < 0.01, as compared to zero in
a one-sample t-test) only for L004 (LAR-ELX speech) when
predicting VUV, AP, and using a synthetic F0. This is proba-
bly because there was no sufficient voicing information in TEP
speech. Further studies with a larger number of patients will be
conducted to verify these preliminary findings.

8. Conclusion

We proposed two conversion methods to improve naturalness
and intelligibility of LAR speech: 1) predicting CLR VUV
or CLR AP using a DNN, and 2) predicting CLR MCEPs us-
ing a cGANs. We also created a synthetic F0 trajectory with
an intonation model consisting of phrase and accent curves.
For predicting CLR VUV or CLR AP, using different con-
text lengths did not have a significant impact. Moreover, pre-
training the prediction networks on FU-, and FV-TIMIT as op-
posed to NV-TIMIT did not result in improved performance.
Similarly, pre-training with FU-, and FV-TIMIT did not lead
to improved performance for predicting CLR MCEP. Adapta-
tion always improved performance. In our subjective tests with
four LAR speakers, we significantly improved the naturalness
of two speakers, and we significantly improved the intelligibil-
ity of one speaker. The results are promising for a challenging
task with a lot of individual variability among four LAR speak-
ers.

4784



9. References
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