
Improving Low Resource Code-switched ASR

using Augmented Code-switched TTS

Yash Sharma1, Basil Abraham2, Karan Taneja1, Preethi Jyothi1

1Indian Institute of Technology Bombay, Mumbai, India
2Microsoft India Development Center, Hyderabad, India

{yashsharma,karantaneja,pjyothi}@iitb.ac.in, baabraha@microsoft.com

Abstract
Building Automatic Speech Recognition (ASR) systems for

code-switched speech has recently gained renewed attention

due to the widespread use of speech technologies in multilin-

gual communities worldwide. End-to-end ASR systems are

a natural modeling choice due to their ease of use and supe-

rior performance in monolingual settings. However, it is well-

known that end-to-end systems require large amounts of labeled

speech. In this work, we investigate improving code-switched

ASR in low resource settings via data augmentation using code-

switched text-to-speech (TTS) synthesis. We propose two tar-

geted techniques to effectively leverage TTS speech samples: 1)

Mixup, an existing technique to create new training samples via

linear interpolation of existing samples, applied to TTS and real

speech samples, and 2) a new loss function, used in conjunction

with TTS samples, to encourage code-switched predictions. We

report significant improvements in ASR performance achieving

absolute word error rate (WER) reductions of up to 5%, and

measurable improvement in code switching using our proposed

techniques on a Hindi-English code-switched ASR task.

Index Terms: speech recognition, text to speech, mixup, aug-

mentation, bilingual, code switching, code mixing

1. Introduction

Code mixing or code switching (CS) is a widespread linguis-

tic phenomenon among speakers in multilingual communities,

where they switch between two or more languages often within

the confines of a sentence. Code switching appears naturally

in conversational speech. With the prevalence of social media,

code switching also appears frequently in textual form. As a

result, building computational models for code switched speech

and text has gained a lot of recent attention.

As is typical for state-of-the-art ASR systems, CS speech

ASR would also require large quantities of labeled speech dur-

ing training. While one could reasonably hope to gain access

to large monolingual corpora in the component languages, CS

speech data is a relatively scarce resource. Thus, it is of great in-

terest to investigate ways in which one can augment CS speech

data in order to effectively train CS ASR systems.

In this work, we investigate the effective use of CS text-to-

speech (TTS) samples to augment ASR systems for CS speech.

With CS text as the starting point, large quantities of TTS sam-

ples can be generated. TTS systems can be trained with far

fewer hours of clean labeled speech compared to ASR systems.

However, there is a distributional mismatch between TTS sam-

ples and real speech samples. Using TTS samples as-is could

lead to over-fitting on artefacts in the TTS data. The main ques-

tion of interest in this work is how to best leverage a fixed quan-

tity of TTS samples to improve ASR for CS speech. Towards

this, our contributions can be summarized as follows:

• We suggest mixup [1] as an appropriate strategy to be

applied to TTS samples and real speech samples in order

to help reduce the distributional mismatch.

• We propose a new CS-bias loss function that encour-

ages the ASR system to code-switch and performs well

in conjunction with TTS samples.

• We demonstrate the efficacy of our proposed techniques

on a Hindi-English code-switched ASR task. We also

measure error reductions at the switching points and ob-

serve clear improvements in performance.

2. Related Work

Prior work on speech recognition for CS speech has focused on

aspects relevant to both the acoustic model and the language

model. For the acoustic model, previous approaches have in-

vestigated efficient ways to do phone merging [2], tying mix-

ture models of two languages within a GMM-HMM model [3]

and using language-dependent inference [4]. There has also

been a lot of prior work on improving LMs for CS text that

includes the use of parallel text in the CS language pair [5], the

use of generative models to synthesize CS text [6, 7, 8, 9]. In

more recent work, end-to-end models have also been explored

for code-switched ASR with improvements observed using lan-

guage identification [10, 11, 12] in multitask (MTL) settings,

jointly using CTC and attention based loss [13, 14] within an

MTL model, multi-graph decoding and LM rescoring [15] for

low-resource CS ASR, and using various units like wordpieces

[10] and byte-pair encoding (BPE) units [16] to model text.

Apart from techniques targeted at CS ASR, several other data

augmentation techniques have been shnown to boost the per-

formance of ASR systems such as speed perturbation [17], ran-

domized spectrogram masking [18], vocal tract length perturba-

tion and semi-supervised learning [19].

Due to the lack of sufficient CS labelled corpora for train-

ing, [20, 21] train ASR systems using synthetic datasets created

by concatenating monolingual segments from the constituent

languages of the CS speech. In contrast, we explore the use

of samples generated from a TTS systems for training our ASR

system. [22, 23] use TTS samples as an augmentation technique

to improve ASR performance on the LibriSpeech corpus. For

monolingual speech recognition in the low-resource scenario,

[24] uses TTS samples to introduce speaker diversity. We pro-

pose techniques that utilize TTS speech for code-switched ASR

with access to only 12 hours of real CS speech. [25] uses TTS

and ASR set up as a chain to train a CS ASR system from non-

parallel speech and text corpora. Though synthetic CS data can

be generated using synthesis engines [26, 27], TTS samples sig-

nificantly differ from real speech in their acoustic characteris-

tics and hence need to be suitably handled in order to be more

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-24024771



effective as sources of data augmentation.

3. Our Proposed Techniques

The use of TTS samples for data augmentation and improving

ASR performance has been investigated in recent work [22, 23].

In order to insulate the ASR model from artefacts specific to

TTS data, prior work has observed that freezing the encoder

parameters [28] and only updating the rest of the model using

TTS samples is beneficial. We present this strategy as a baseline

and propose two other techniques in this section that further

improve performance.

3.1. Mixup Algorithm and Sampling

Mixup [1] was originally proposed as a simple regulariza-

tion technique to train a classifier using convex combina-

tions of pairs of training instances and their corresponding la-

bels. Mixup has also been investigated within the paradigm of

ASR [29, 30, 31, 32]. Given spectral features of two speech

samples, Xa and Xb, the mixed training example Xmix is given

by:

Xmix = λmix ·Xa + (1− λmix) ·Xb (1)

Here, λmix = max(λ, 1 − λ) where λ ∼ Beta(α, β), and α, β

are the standard shape parameters of the beta distribution. We

apply this mixup strategy to TTS samples and real speech sam-

ples such that Xa is a TTS sample and Xb is a randomly-chosen

real speech sample. For our experiments, we set α = 0.4 and

β = 0.4. They were fine-tuned on Dev set. The resulting shape

of the beta distribution ensures that a λ sampled from this dis-

tribution would either be very close to 0 or 1. Given this skew,

we set the transcription of the mixed utterance Xmix to be the

same as that of the TTS sample Xa.

With the above-mentioned mixup strategy in place, we in-

tend for real speech samples to be mixed in with TTS samples to

bring the latter a little closer to real speech in the input feature

space. Given that the acoustic properties of TTS speech dif-

fer from natural speech in various dimensions, particularly in

its intonational properties, we hope mixup helps mitigate these

differences to a small extent and acts as a regularizer. This is

indeed borne out by our experiments shown in Section 5.1.

3.2. Rewarding Code-switching with a CS-bias Loss

Before describing our new loss function, we briefly outline the

end-to-end ASR architecture employed in this work. Our base

ASR model is a standard hybrid CTC-attention end-to-end ar-

chitecture that uses an encoder-decoder paradigm with atten-

tion [33]. This model is trained with a multitask objective

that uses a weighted combination of a CTC-based loss and an

attention-based loss via a shared encoder. The combined loss

function is referred to as LMTL. For CS speech, we devise a

new loss term to be added to LMTL that explicitly rewards code

switching.

Many common English words have been assimilated into

the Hindi language and appear in the Devanagari script within

the Hindi vocabulary. They also appear as English words in

their romanized forms. However, since Hindi is typically the

dominant (matrix) language in Hindi-English CS speech, the

model is hesitant to code-switch even when the acoustics have

sufficient evidence of a potential switch point. Our proposed

modification to the loss function rewards higher probabilities

being assigned to English characters. This reward can be quan-

tified as: R =

N∑

t=1

∑

c∈Se

Pt(c) , where Pt(c) is the probability

at output timestep t assigned to a character c that is drawn from

the set of all English characters denoted by Se. (The output

sequence is of total length N .)

The modified CS-bias loss function then becomes:

LCS = LMTL − λ
′ · (RCTC +RATT) (2)

where RCTC and RATT are rewards specific to the CTC and at-

tention outputs and λ′ is the scaling coefficient associated with

the new loss term. The reward term is meant to serve as an ex-

plicit boost to English characters whenever speech switches to

English.

4. Experimental Setup

Datasets. We use a proprietary dataset from Microsoft com-

prising 50 hours of Hindi monolingual speech (Hi-50) and 50

hours of Indian accented English speech (En-50).We also make

use of approximately 12 hours of real CS Hindi-English speech

that amounts to 12K CS utterances (i.e. 12K different transcrip-

tions). This dataset will henceforth be referred to as CS-Real.

The speech corpus consists of mostly conversational type utter-

ances collected in a multi-condition scenario. The utterances

are transcribed in both Roman and Devanagari scripts corre-

sponding to English and Hindi language respectively [21]. For

the first set of experiments, until Section 3.2, we restrict our-

selves to TTS samples generated using the text in CS-Real and

assume no access to real CS speech. In Section 5.4, we show

the effect of our techniques on a model that has been finetuned

using speech in CS-Real.

Our models are evaluated on two evaluation datasets com-

prising real CS speech. The development set (Dev) consists of

2, 000 sentences with a total of 25, 679 words and the unseen

test set (Test) contains 2, 000 sentences with 29, 408 words

overall. Dev is used to tune α, β, and other hyperparameters

that appear in our techniques.

TTS Generation. To generate TTS samples, we train a

Tacotron-2 model [34] that employs a multi-speaker, multilin-

gual acoustic model and maps phone sequences to Mel spectro-

grams. Our model is trained using roughly 30,000 utterances

from six different Indian languages – English, Hindi, Tamil,

Telugu, Gujarati and Marathi – spoken by a single speaker in

each language. The acoustic model is created using a common

phone set which is the union of phone sets of all six languages.

Phones that are common across different languages get merged,

while phones that are specific to a language remain intact.We

use a parallel Wavenet vocoder [35] that is trained on large set

of Microsoft proprietary TTS data.

We train the acoustic model for 250K iterations with a batch

size of 32. We also make use of high-quality speech data from

70 Hindi speakers speaking in different accents from a larger

Hindi dataset from which Hi-50 was drawn [21]. We further

adapt our acoustic model with 100-200 samples from specific

speakers for an additional 10K iterations with the same train-

ing hyperparameters. This final adaptation step yields speaker-

specific models for each speaker. Finally, we feed CS text

from CS-Real as input and generate speech samples from these

speaker-adapted models that amount to roughly 100 hours of

speech overall.

4772



Implementation Details. We use the ESPnet toolkit [33] for

all our experiments as it provides a flexible interface for many

end-to-end (E2E) architectures. As mentioned in Section 3.2,

we train our baseline model using a multi-task (MTL) objective

that combines a CTC loss and an attention loss via a shared en-

coder. All our models use graphemes as the output vocabulary.1

The encoder architecture consists of 4 layers of stacked

bidirectional LSTMs, with 512 encoder units, 512-dimensional

encoder projections and sub-sampling to reduce sequence

lengths. We used a location-aware attention-based model with

a 1-layer decoder for the CTC and attention modules each. The

maximum input length is 800 frames and the maximum output

length is 150 tokens. λMTL is the interpolation coefficient used

in the combined loss LMTL; this was set to 0.7 in all our experi-

ments, inspired from results in [14]

Our output vocabulary includes both English and Devana-

gari characters, along with a “space” character, an unknown

marker and an end-of-sentence marker. The model was trained

using the Adadelta optimizer [37] with a base learning rate of

1.0. We trained the network for a total of 20 epochs with a pa-

tience value set to 10. All experiments used data shuffling as

well as sortagrad [38] for all epochs, i.e. we first sorted the data

by length, batched the samples, and then shuffled the order of

batches. This turned out to perform better than doing no sorta-

grad and no shuffling. The effective batch size was set to 32 in

all our experiments. For some experiments where we fine-tune

a pre-trained model using TTS samples, we freeze the encoder

as described in [28]. These experiments are labelled with FE

(frozen encoder).

We used a word-based recurrent neural network language

model (RNNLM) with a weight of 0.1. The RNNLM is a single-

layer LSTM with 1000 units and an output vocabulary restricted

to the 2000 most frequently occurring words in CS-Real. It is

trained for 40 epochs before converging with a patience of 20.

During decoding, we used beam decoding with a width of 20

and no insertion penalty was invoked.

5. Results

Our baseline hybrid CTC-based ASR model is trained on the

two monolingual Hi-50 and En-50 datasets merged together.2

The subsequent sections will be structured as follows. In Sec-

tion 5.1, we show the benefits of mixup in conjunction with TTS

samples. Section 5.2 will show the effect of using the CS-bias

loss function when using TTS samples. Finally, in Section 5.4,

we finetune our baseline ASR system using real CS speech in

CS-Real and examine the effects of our proposed techniques on

the resulting system.

5.1. Mixup with TTS samples

Table 1 shows how mixup is beneficial when used in conjunc-

tion with TTS samples. As mentioned before, the “Baseline”

system does not make use of any CS speech. The “no-mixup”

systems refer to the use of TTS samples with the real speech

samples without any mixup. The numbers alongside each sys-

tem denote the number of hours of TTS speech used in each

experiment. That is, “no-mixup 50” refers to the use of 100

hours of real speech (from Hi-50 and En-50) and 50 hours

of TTS speech without any mixup in place. We observe that

1We also tried a byte-pair-encoding (BPE) [36] based model, but
this did not perform as well as the purely grapheme-based models.

2By tuning on Dev, we observed that merging the Hindi and English
monolingual data in unit ratio performed the best.

Table 1: WERs (CERs) using TTS data, with and without mixup

System Dev Test

Baseline 70.7 (54.3) 72.1 (54.5)

no-mixup 20 71.5 (49.1) 72.9 (49.2)

no-mixup 50 69.7 (48.6) 71.4 (48.5)

no-mixup 100 70.0 (48.7) 71.0 (48.2)

add-mixup 20 70.3 (48.5) 71.4 (48.2)

add-mixup 50 68.8 (47.9) 70.3 (47.9)

add-mixup 100 69.0 (47.9) 70.0 (47.4)

Table 2: WERs (CERs) using TTS data, with and without freez-

ing the encoder

System Dev Test

no-mixup 100 70.0 (48.7) 71.0 (48.2)

no-mixup 100 (FE) 71.2 (46.7) 73.0 (47.6)

add-mixup 100 69.0 (47.9) 70.0 (47.4)

add-mixup 100 (FE) 69.5 (45.2) 71.3 (46.3)

adding code-switched TTS samples to the monolingual speech,

even without any mixup, is beneficial. Adding more TTS data

improves performance further, however there is a trend of di-

minishing returns (72.9 → 71.4 → 71.0). The “add-mixup”

systems, in contrast to “no-mixup”, uses mixup with each batch

of TTS samples. Each batch of TTS speech samples is mixed

with a different batch of real speech, and λmix is sampled anew

for each such batch-wise mixing. We observe clear improve-

ments in performance with using “add-mixup” in comparison

to “no-mixup”.

We examine the effect of freezing the encoder (FE) as sug-

gested in [28] on both “no-mixup” and “add-mixup” in Table 2.

We observe that freezing the encoder was not an effective strat-

egy in our setting possibly due to the use of smaller amounts

of TTS data (in comparison to the corpus used in prior work).

However, the CERs do improve with freezing the encoder. This

will need further investigation which we leave as future work.

When augmenting real speech samples with TTS samples

in the “add-mixup” setting, there are two ways in which this

could be implemented. The mixup samples could be used to

train the ASR system from scratch or one could start with the

baseline ASR system and further finetune it using the mixup

samples. Table 3 shows results from both these training strate-

gies. Training from scratch appears to be a more effective strat-

egy yielding lower error rates on both Dev and Test compared

to the systems using finetuning (denoted by FT).

Table 3: WER(CER): Finetune vs from scratch experiments

System DEV TEST

add-mixup 20 (scratch) 70.3 (48.5) 71.4 (48.2)

add-mixup 50 (scratch) 68.8 (47.9) 70.3 (47.9)

add-mixup 100 (scratch) 69.0 (47.9) 70.0 (47.4)

add-mixup 20 (FT) 69.8 (48.4) 71.6 (48.3)

add-mixup 50 (FT) 69.7 (47.6) 70.9 (47.7)

add-mixup 100 (FT) 68.9 (48.0) 70.2 (47.8)

4773



Table 4: WERs (CERs) highlighting the effect of CS-bias. A-100

refers to the “add-mixup 100” system.

System Dev Test

Baseline 70.7 (54.3) 72.1 (54.5)

A-100 69.0 (47.9) 70.0 (47.4)

A-100 (FT) 68.9 (48.0) 70.2 (47.8)

A-100 + CS-bias (scratch) 67.7 (47.4) 69.0 (47.3)

A-100 (FT) + CS-bias 68.6 (47.3) 70.2 (47.3)

5.2. Influence of CS-bias loss function

We observe that the modified CS-bias loss function is effective

in encouraging CS predictions and reduces the overall WER

on our evaluation datasets, over and above the improvement

gained by using mixup. Explicitly rewarding English predic-

tions helps overcome the model’s bias towards predicting back-

transliterated Devaganari words instead of English words. In all

our experiments involving CS-bias, λ′ was set to 0.25.

Table 4 shows how CS-bias influences performance. In-

cluding this loss term during training of an “add-mixup 100”

system from scratch is most beneficial. We see a clear reduc-

tion in WERs both on the Dev and Test datasets. We also tried

including the loss term as part of the finetuning phase while

training “add-mixup 100 FT”. However, this did not help as

much possibly because the model is already accustomed to pre-

dicting monolingual sentences and more resistant to switching.

5.3. Accuracy on CS Switch-points

The above experiments suggest that the CS-bias loss is useful in

improving CS ASR performance. However, it would be illus-

trative to examine the errors at code switching points and the in-

fluence of CS-bias on these specific errors. [21] introduces one

such metric that helps us compute errors at the switching points.

If there are M words on both sides of the switch points across all

reference transcriptions and N of these switch point words are

predicted correctly, then the code-switched WER (CS-WER) is

defined as, CS-WER = 1− N

M
.

Table 5 lists the CS-WER values on both Dev and Test

datasets for a few important systems identified in the previous

experiments. As intended, we see consistent improvements on

the CS-WER metric with using the CS-bias loss. Interestingly,

the system with the best CS-WER score was one that used

“add-mixup” in a finetuning phase with a frozen encoder along

with the CS-bias loss. This could be because of the combination

of CS-bias explicitly encouraging switching and the frozen en-

coder preventing the model from encoding artefacts from TTS

speech.

5.4. Finetuning on small amounts of real CS speech

In all the experiments so far, we assume no access to real CS

speech and exclusively used synthetic CS speech (in addition

to monolingual speech). However, a natural question that may

arise is how our proposed techniques fare when the model can

also make use of small amounts of real CS speech. To demon-

strate this, we use speech from CS-Real to finetune our baseline

model. Table 6 shows that even with access to just 12 hours of

real CS speech the WERs dramatically improve over the purely

monolingual baseline system. Starting from the “add-mixup

100” system that was trained with CS-bias and further finetun-

ing with CS-Real further improves WERs on both Dev and Test

Table 5: Comparing CS-WER on different systems

System DEV TEST

Baseline 82.4 83.3

no-mixup 100 (w/o CS-bias) 80.3 81.1

no-mixup 100 (with CS-bias) 79.7 81.2

add-mixup 100 (w/o CS-bias) 79.7 80.6

add-mixup 100 (with CS-bias) 79.3 79.8

add-mixup 100 (FT, w/o CS-bias) 79.1 80.4

add-mixup 100 (FT, with CS-bias) 78.7 79.8

add-mixup 100 (FT, with FE) 75.5 78.3

add-mixup 100 (FT, FE, CS-bias) 73.1 76.1

Table 6: WERs / CS-WERs after finetuning with real CS speech

System DEV TEST

Baseline (no CS speech) 70.7/82.4 72.1 /83.3

FT with CS-Real (B1) 58.6/59.8 59.9/60.2

B1 + CS-bias 58.4/58.8 59.4/59.6

A-100 (FT w/ CS-Real) 54.4/54.0 55.5/54.8

A-100 + CS-bias (FT w/ CS-Real) 53.6/53.3 55.2/54.4

A-100 (FT w/ CS-Real) + CS-Bias 54.8/54.7 55.7/55.5

datasets. Table 6 also shows the CS-WER values for all the

models. Both our proposed techniques also help in achieving

the best CS-WER.

6. Conclusions

In this work, we explore the usability of high quality text-to-

speech (TTS) data as a resource for CS ASR in settings where

natural code-switched speech is unavailable or is a scarce re-

source. We present two effective techniques to make use of

TTS samples: mixup and a loss function that encourages code

switching. We show performance improvements using both

these techniques in two different experimental settings involv-

ing no real CS speech and small amounts of CS speech. This

work opens up many interesting questions including whether

there are other auxiliary loss functions that can help code

switching better and how the proposed techniques will scale to

very large quantities of TTS samples. We leave these explo-

rations for future work.

7. Acknowledgements

We acknowledge Praneeth Lakmala and Arijit Mukherjee for

their help in building multi-lingual Indic TTS models for the

TTS data generation. We are also grateful to Niranjan Nayak,

Rupesh Mehta, Sandeepkumar Satpal, Ankur Gupta and Sa-

tarupa Guha of Microsoft IDC for their time and support with

hardware resources and corpora, and their valuable guidance.

8. References

[1] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” 2017.

[2] N. T. Vu, D.-C. Lyu, J. Weiner, D. Telaar, T. Schlippe, F. Blaicher,
E.-S. Chng, T. Schultz, and H. Li, “A first speech recognition sys-
tem for Mandarin-English code-switch conversational speech,” in
Proceedings of ICASSP, 2012, pp. 4889–4892.

4774



[3] Y. Li, P. Fung, P. Xu, and Y. Liu, “Asymmetric acoustic modeling
of mixed language speech,” in Proceedings of ICASSP, 2011, pp.
5004–5007.

[4] D. Imseng, H. Bourlard, M. M. Doss, and J. Dines, “Language
dependent universal phoneme posterior estimation for mixed lan-
guage speech recognition,” in Proceedings of ICASSP, 2011, pp.
5012–5015.

[5] G. I. Winata, A. Madotto, C. Wu, and P. Fung, “Learn to code-
switch: Data augmentation using copy mechanism on language
modeling,” CoRR, vol. abs/1810.10254, 2018.

[6] E. Yılmaz, H. van den Heuvel, and D. Van Leeuwen, “Acous-
tic and textual data augmentation for improved ASR of code-
switching speech,” in Proceedings of Interspeech, 2018, pp.
1933–1937.

[7] H. Adel, N. T. Vu, F. Kraus, T. Schlippe, H. Li, and T. Schultz,
“Recurrent neural network language modeling for code switch-
ing conversational speech,” in Proceedings of ICASSP, 2013, pp.
8411–8415.

[8] S. Garg, T. Parekh, and P. Jyothi, “Dual language models for
code switched speech recognition,” in Proceedings of Interspeech,
2018, pp. 2598–2602.

[9] A. Pratapa, G. Bhat, M. Choudhury, S. Sitaram, S. Dandapat, and
K. Bali, “Language modeling for code-mixing: The role of lin-
guistic theory based synthetic data,” in Proceedings of ACL, 2018,
pp. 1543–1553.

[10] C. Shan, C. Weng, G. Wang, D. Su, M. Luo, D. Yu, and L. Xie,
“Investigating end-to-end speech recognition for Mandarin-
English code-switching,” in Proceedings of ICASSP, 2019, pp.
6056–6060.

[11] K. Li, J. Li, G. Ye, R. Zhao, and Y. Gong, “Towards code-
switching ASR for end-to-end CTC models,” in Proceedings of

ICASSP, 2019, pp. 6076–6080.

[12] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. J. Moreno,
E. Weinstein, and K. Rao, “Multilingual speech recognition with
a single end-to-end model,” in Proceedings of ICASSP, 2018, pp.
4904–4908.

[13] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in Pro-

ceedings of ICASSP, 2017, pp. 4835–4839.

[14] B. M. L. Srivastava, B. Abraham, S. Sitaram, R. Mehta, and
P. Jyothi, “End-to-end ASR for code-switched Hindi-English
speech,” CoRR, vol. abs/1906.09426, 2019.

[15] X. Yue, G. Lee, E. Yilmaz, F. Deng, and H. Li, “End-to-end code-
switching ASR for low-resourced language pairs,” in Proceedings

of ASRU, 2019, pp. 972–979.

[16] B. Li, Y. Zhang, T. N. Sainath, Y. Wu, and W. Chan, “Bytes are all
you need: End-to-end multilingual speech recognition and syn-
thesis with bytes,” CoRR, vol. abs/1811.09021, 2018.

[17] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio aug-
mentation for speech recognition,” in Proceedings of Interspeech,
2015, pp. 3586–3589.

[18] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Augmenta-
tion Method for Automatic Speech Recognition,” in Proceedings

of Interspeech, 2019, pp. 2613–2617.

[19] A. Ragni, K. Knill, S. P. Rath, and M. J. F. Gales, “Data augmen-
tation for low resource languages,” in Proceedings of Interspeech,
2014, pp. 810–814.

[20] H. Seki, S. Watanabe, T. Hori, J. L. Roux, and J. R. Hershey,
“An end-to-end language-tracking speech recognizer for mixed-
language speech,” in Proceedings of ICASSP, 2018, pp. 4919–
4923.

[21] K. Taneja, S. Guha, P. Jyothi, and B. Abraham, “Exploiting mono-
lingual speech corpora for code-mixed speech recognition,” in
Proceedings of Interspeech, 2019, pp. 2150–2154.

[22] A. E. Rosenberg, Y. Zhang, B. Ramabhadran, Y. Jia, P. J. Moreno,
Y. Wu, and Z. Wu, “Speech recognition with augmented synthe-
sized speech,” in Proceedings of ASRU, 2019, pp. 996–1002.

[23] G. Wang, A. Rosenberg, Z. Chen, Y. Zhang, B. Ramabhadran,
Y. Wu, and P. Moreno, “Improving speech recognition using
consistent predictions on synthesized speech,” in Proceedings of

ICASSP, 2020.

[24] C. Du and K. Yu, “Speaker augmentation for low resource speech
recognition,” in Proceedings of ICASSP, 2020, pp. 7719–7723.

[25] S. Nakayama, A. Tjandra, S. Sakti, and S. Nakamura, “Speech
chain for semi-supervised learning of Japanese-English code-
switching ASR and TTS,” in SLT Workshop, 2018, pp. 182–189.

[26] S. Nakayama, T. Kano, Q. T. Do, S. Sakti, and S. Nakamura,
“Japanese-english code-switching speech data construction,” in
International Conference on Speech Database and Assessments,
2018, pp. 67–71.

[27] T. Kano, S. Sakti, and S. Nakamura, “Structured-based curriculum
learning for end-to-end english-japanese speech translation,” in
Proceedings of Interspeech, 2017, pp. 2630–2634.

[28] Y. Jia, M. Johnson, W. Macherey, R. J. Weiss, Y. Cao, C. Chiu,
N. Ari, S. Laurenzo, and Y. Wu, “Leveraging weakly supervised
data to improve end-to-end speech-to-text translation,” in Pro-

ceedings of ICASSP, 2019, pp. 7180–7184.

[29] I. Medennikov, Y. Y. Khokhlov, A. Romanenko, D. Popov, N. A.
Tomashenko, I. Sorokin, and A. Zatvornitsky, “An investigation
of mixup training strategies for acoustic models in ASR,” in Pro-

ceedings of Interspeech, 2018, pp. 2903–2907.

[30] G. Saon, Z. Tüske, K. Audhkhasi, and B. Kingsbury, “Sequence
noise injected training for end-to-end speech recognition,” in Pro-

ceedings of ICASSP, 2019, pp. 6261–6265.

[31] Y. Zhu, T. Ko, and B. Mak, “Mixup learning strategies for text-
independent speaker verification,” Proceedings of Interspeech, pp.
4345–4349, 2019.

[32] Y. Liang, L. Yang, X. Wang, Y. Li, C. Jia, and J. Wang, “The
levoice far-field speech recognition system for voices from a dis-
tance challenge 2019,” Proceedings of Interspeech, pp. 2483–
2487, 2019.

[33] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen,
A. Renduchintala, and T. Ochiai, “ESPnet: End-to-end speech
processing toolkit,” in Proceedings of Interspeech, 2018, pp.
2207–2211.

[34] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous,
Y. Agiomvrgiannakis, and Y. Wu, “Natural TTS synthesis by con-
ditioning WaveNet on Mel spectrogram predictions,” in Proceed-

ings of ICASSP, 2018, pp. 4779–4783.

[35] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. van den Driessche, E. Lockhart, L. C. Cobo,
F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman,
E. Elsen, N. Kalchbrenner, H. Zen, A. Graves, H. King, T. Wal-
ters, D. Belov, and D. Hassabis, “Parallel WaveNet: Fast high-
fidelity speech synthesis,” in Proceedings of ICML, 2019.

[36] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in Proceedings of ACL,
2016, pp. 1715–1725.

[37] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012.

[38] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos,
E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun,
P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang,
Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu,
“Deep Speech 2: End-to-end speech recognition in English and
Mandarin,” in Proceedings of ICML, 2016, p. 173–182.

4775


