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Abstract

Code-switching speech recognition is a challenging task which
has been studied in many previous work, and one main chal-
lenge for this task is the lack of code-switching data. In this
paper, we study end-to-end models for Mandarin-English code-
switching automatic speech recognition. External monolingual
data are utilized to alleviate the data sparsity problem. More im-
portantly, we propose a bi-encoder transformer network based
Mixture of Experts (MoE) architecture to better leverage these
data. We decouple Mandarin and English modeling with two
separate encoders to better capture language-specific informa-
tion, and a gating network is employed to explicitly handle the
language identification task. For the gating network, different
models and training modes are explored to learn the better MoE
interpolation coefficients. Experimental results show that com-
pared with the baseline transformer model, the proposed new
MOoE architecture can obtain up to 10.4% relative error reduc-
tion on the code-switching test set.

Index Terms: code-switching, automatic speech recognition,
end-to-end, mixture of experts

1. Introduction

Code-switching, including inter-sentential code-switching and
intra-sentential code-switching, occurs when a speaker switches
from one language to another. It’s a common phenomenon in
many multilingual communities [1, 2, 3]. Traditionally, auto-
matic speech recognition (ASR) systems consist of acoustic,
pronunciation and language models that are optimized indepen-
dently [4]. In the scenario of code-switching, one challenge for
traditional ASR based system is the requirement of hand-crafted
components, such as a well-designed mixed phone set and the
corresponding pronunciation lexicon [5].

End-to-end (E2E) models directly optimize the probabil-
ity of output sequences given input speech observations with
a single network, thus provide an elegant solution to build a
ASR system. Recent work on E2E models can be categorized
into three main approaches: Connectionist Temporal Classifi-
cation (CTC) [6], RNN-Transducer [7, 8] and attention-based
sequence-to-sequence models [9, 10]. Besides, joint CTC-
attention model [11, 12] exploits the advantages from both CTC
and sequence-to-sequence models within the multi-task learn-
ing framework, which leads to better performance and robust-
ness. E2E ASR models have made promising progress in many
areas including monolingual [13, 14], multilingual [15, 16] and
multi-speaker [17] speech recognition task. It’s also shown
that attention-based sequence-to-sequence models are able to
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achieve state-of-the-art performance [13]. More recently, trans-
former network [18] that firstly proposed for Neural Machine
Translation rapidly became the mainstream framework among
other NLP tasks, and for ASR tasks it’s shown to outperform
RNN-based end-to-end models [19].

One major challenge for building a code-switching ASR
system is the lack of code-switching training data, and this prob-
lem is even severe for E2E models. However, for Mandarin
and English language where rich resources monolingual data
are available, leveraging these external data can help alleviate
this data sparsity issue. In prior work of multilingual ASR,
it’s observed that adding a one-hot language vector to condi-
tion the E2E model with specific language can boost the multi-
lingual performance [15, 16, 20]. Similar strategy is also pro-
posed in [21], where layer-wise gating mechanism is employed
to adapt the model for specific language. But for intra-sentential
code-switching task where languages change within a single ut-
terance, obtaining the prior language identification (LID) infor-
mation is not easy as it in multilingual ASR.

In this work, we study E2E approaches for Mandarin-
English code-switching ASR task. To efficiently leverage the
monolingual data, we propose a bi-encoder transformer net-
work based mixture of experts (MoE) architecture. MoE mod-
els has been studied in many works including universal acoustic
modeling [22] , multi-accent ASR [23] and language model-
ing [24]. Similar idea has also been applied in cluster adap-
tive training [25] for speaker adaptation. As for this Mandarin-
English code-switching ASR task, two transformer encoders
serve as Mandarin expert and English expert individually to
provide different views, while a gating network is employed
to weight the expert outputs. Unlike the normal transformer
model, this MoE architecture enables the model to better cap-
ture language-specific information with separate encoders, and
the language identification task is explicitly handled.

Moreover, we explore different gating network models and
training modes to learn the MoE interpolation coefficients. We
find that a single linear layer can well handle the LID task,
and the MoE coefficients can be learned in an unsupervised
mode. Experimental results show that the proposed bi-encoder
based MoE architecture can obtain up to 10.4% relative error
reduction over the baseline transformer model on a Mandarin-
English code-switching test set. It’s also observed that the code-
switching performance can be further improved with an addi-
tional transfer learning stage.

The rest of this paper is organized as follows. In Section 2
we review the related work briefly. Then we describe the pro-
posed MoE architecture for code-switching task. The proposed
method is evaluated and results are analyzed in Section 4. Fi-
nally, we conclude the paper and discuss the future work.
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2. Related work

Prior work on code-switching ASR is mainly in traditional hy-
brid systems [1, 2, 3]. Recently, motivated by the progress
of E2E models, researchers have been interested in building
E2E code-switching ASR system [5, 26, 27]. E2E CTC mod-
els for code-switching task was firstly explored in [26], where
an additional LID classifier is introduced to adjust the poste-
riors of the initial CTC model. In [5, 27], LID based mul-
titask learning was proposed to improve the performance of
attention-based sequence-to-sequence models. Besides, there
are also researches on augmenting output token set with LID
tokens [28, 29].

In this work we focus on leveraging rich resources monolin-
gual data to achieve a better code-switching ASR performance,
and a new MoE structure is proposed to better handle Mandarin
and English modeling.

3. Code-switching ASR with bi-encoder
Mixture of Experts

In this section, we first give a brief review of the baseline trans-
former based E2E ASR, and then we describe the proposed bi-
encoder transformer network based MoE architecture and re-
lated training strategies. The new approach mainly includes
three parts: bi-encoder bilingual model pretraining, mixture of
experts architecture construction and a gating network for MoE
interpolation coefficients.

3.1. Revisit on transformer-based E2E ASR

Transformer network is a sequence-to-sequence structure that
basically consists of encoder network and decoder network. The
encoder network is composed of a stack of NV identical layers,
and each layer consists of multi-head self-attention and fully
connected feed forward network [18]. It takes acoustic features
x as input and maps x into high level representations h. For
ASR task, usually a front-end CNN network is adopted to do
time-scale down-sampling [30].

h = Encoder(x) e

The decoder network utilizes the encoded representation
h with attention mechanism and outputs the predicted tokens
auto-regressively. We denote the target sequence as y, and at
each decoding step, the decoder emits the posterior probabilities
of the next token given previous outputs. We train the trans-
former model with joint CTC-attention [11, 12] framework to
exploit the advantages from both CTC and S2S models. Denote
Lete(y|x) as the CTC objective loss, Ls25(y|x) as the S2S ob-
jective loss, the loss function of joint CTC-attention network is
defined as:

Lijca(y1%) = NjcaLete(¥]X) + (1 = Njea) Ls2s(¥]X)  (2)

with a tunable coefficient Ajc, € [0, 1] to control the contribu-
tion of each loss. Beam search decoding is adopted to predict
the output sequence, where S2S scores together with CTC pre-
fix scores are combined to make the decision.

For the modeling units, we combine Chinese characters
and English BPE subwords [31] as final units. We also apply
SpecAugment [14] for all data through out our experiments.

3.2. Pretrained bi-encoder bilingual model

We first pretrain a special bi-encoder bilingual model with only
monolingual Mandarin and English data. Since language iden-
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tity for monolingual data can be obtained in advance, we are
able to decouple Mandarin and English language with two sep-
arate encoder'. As shown in the left part of Figure 1, when
given acoustic features inputs, prior LID information is used to
decide which encoder to use. Denote X, and X.,, as the col-
lection of all Mandarin inputs and English inputs separately, we
formulate this procedure as:

henc — {

The output embedding h*"*¢ is further utilized in a CTC
layer and a decoder network, which are shared across the two
language. For Mandarin and English language where rich re-
sources speech data are available, both the two encoder can be
well trained with specific language data, without the disturbance
from the other language domain. This separate modeling struc-
ture is much more flexible, which has the potential advantage of
direct model structure adjustment to a specific language.

MandarinEncoder(x) if x € Xcn

. . 3)
EnglishEncoder(x) if x € Xen

3.3. Mixture of Experts architecture for CS ASR

The pretrained bi-encoder bilingual model is able to handle
both Mandarin and English modeling, however, it’s unable to
perform intre-sentential code-switching. Motivated by recent
work on MoE [22, 23], bi-encoder transformer network based
MOoE architecture is explored to address code-switching ASR,
and Mandarin and English encoders in the bilingual model are
treated as two language experts. The pretrained bilingual model
in the last subsection is used for initialization, and all monolin-
gual Mandarin and English data together with code-switching
data are utilized in this stage. Since LID information is not
known in advance, we let the two experts in parallel provide
two different expert views h” and h*":

h®" = MandarinEncoder(x) 4)

h®" = EnglishEncoder(x) ®)

At each frame ¢, a gating network is developed to dynami-

cally output MoE interpolation coefficients af™ and af™, which
are utilized to combine the two encoder output embeddings:

mix cny.cn eny. en
hi™ = a;"h;" + oy "hy

6

where the two scalar coefficients o™ and o™ range from [0, 1]
and the sum of the coefficients equals to one for all frames. In
the single language situation, e.g. pure Mandarin speech, we
expect the model to attend more on the Mandarin encoder and
so ag™ should be larger and even close to one while a§™ is close
to zero. In the scenario of code-switching, the MoE coefficients
can control the language switch within the utterance.

3.4. Gating network for MoE interpolation

We develop a gating network to predict the MoE interpola-
tion coefficients, and different methods are compared. One
straight forward method is to train an external language iden-
tification (LID) classifier, and in our experiments we train a
self attention network (SAN) based model for LID classifica-
tion. We refer to this method as external LID method. In this

11t is noted that the two encoder can use different structures, but for
simpleness we choose the identical transformer encoders in our experi-
ments.
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Figure 1: The proposed bi-encoder transformer network based MoE architecture: (1) pretrained bi-encoder bilingual model; (2)
mixture of experts architecture for code-switching ASR; (3) gating network for MoE interpolation coefficients;

method, raw input features x are used to train the LID module
in advance, and the output probability of each language is di-
rectly used to weight the experts outputs. The LID and ASR
are trained independently. To improve the performance of LID
classifier, we adopt transfer learning strategy and a pretrained
CTC model is used for initialization.

In the second built-in LID method, we use the outputs of
the two separate encoders as inputs to the gating network, thus
the gating network is aware of expert outputs. We think that this
high-level representation features are better for LID classifica-
tion. For this build-in LID method, the ASR and LID modules
in this MoE architecture can be trained jointly, and the objective
loss is changed to:

Lo (y]x) = Ljca(y1x) + NiaLria(yiidalor) @)

where y;;q4 is the LID target and o the predicted MoE interpola-
tion coefficients. This formulation includes two training modes
of the gating networks: when A;;¢q > 0 it means the supervised
gating network training mode, and in contrast A\;;¢ = 0 means
the unsupervised training mode.

Since the high-level representation h{"™ and h{" already
maintain rich linguistic information, the interpolation coeffi-
cients a; = [af™, a§™]” can be modeled with a single linear
layer:

a; = Softmax(Weo hi™ + Wel hi™ + beoe) (8)

4. Experiments
4.1. Experimental setup

Our experiments are conducted on ASRU 2019 Mandarin-
English code-switching Challenge dataset, which consists of
about 500 hours Mandarin data and 200 hours code-switching
data. For English corpus, we choose a subset of 460 hours data
from Librispeech corpus [32] to match the size of Mandarin
data. Additional 20 hours code-switching data is reserved as
development set. For system evaluation, we used three test sets:
Mandarin test set (ZH), English test set (EN) and Mandarin-
English code-switching test set (CSevar)-

For acoustic feature, 80 dimensional log-mel filterbanks are
extracted with a step size of 10ms and window size of 25ms,
and utterance-level CMVN is applied on the fbank features. As
for modeling unit, we combine Chinese characters and English
BPE subword units [31]. We choose Mandarin characters that
occur more than 25 times in the training data, which results in
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3003 characters, and the other characters are mapped into unk
symbol. We generate 1000 BPE units for English, and there
are totally 4006 tokens for modeling (with two extra tokens for
blank and sos/eos).

We report character error rate (CER) and word error
rate (WER) for pure Mandarin and English test set respectively.
As for the code-switching test set, we report Mandarin part
CER, English part WER and the total mix error rate (MER),
as those in ASRU2019 Challenge.

4.2. Performance evaluation of baseline systems

We use ESPnet toolkit [33] to train our baseline transformer
model. We use 12-layer transformer in encoder and 6-layer in
decoder, all with attention dimension 256. We apply SpecAug-
ment [14] and fix Ajc, with 0.3 throughout our experiments. In
the decoding stage, we use a beam search size of 8 and decoding
CTC weight of 0.4.

Table 1: Performance (CER/WER) (%) comparison of base-
line systems trained with different data. “CHN”, “ENG”
and “CS” mean Chinese, English and code-switching train-
ing data respectively, “ALL” denotes using both code-switching
and two monolingual training datasets. “n/a” means that re-
sults are not available for that system. Code-switching perfor-
mance (CSeyai) is reported with Mandarin part CER, English
part WER and the total MER.

CS eval
Model TR-Data ZH EN A EN MIX
CHN 2.93 n/a n/a n/a n/a
Baseline ENG n/a 9.93 n/a n/a n/a
CS n/a n/a 9.60 30.18 11.84
ALL 462 11.85 | 8.79 28.14 10.89

We present the performance of baseline systems in Table 1.
It is observed that the monolingual system can obtain a low error
rate on the monolingual test sets, but it cannot handle the cross-
lingual or code-switching task. The system using only code-
switching training data can perform code-switching, but the per-
formance is not satisfactory due to the lack of code-switching
training data, with a MER of 11.84%. The last line of Table 1
shows that pooling all the data together can make the system
recognize all kinds of data, and the code-switching performance
is significantly improved. However, on monolingual testing sets



it performs much worse compared with the monolingual mod-
els. We hypothesize that the potential of these monolingual data
is not fully exploited.

4.3. Evaluation of the proposed bi-encoder MoE architec-
ture

We evaluate of the proposed method in this section. A bi-
encoder bilingual model with two identical 12-layer transformer
encoder (dimension of 256) is pretrained, as introduced in Sec-
tion 3.2. Later we use this pretrained model for initialization to
train our MoE model, with different gating networks. For a fair
comparison, we re-build a baseline with a larger encoder (di-
mension of 512), so that the mode size can be similar as the
proposed MoE model. The encoder representation is projected
down to the decoder dimension with a layer-normalized affine
transformation, and the other condition are controlled the same
as the previous baseline transformer models and MoE model.

Table 2: Performance comparison (CER/WER) (%) of different
systems trained with all monolingual and code-switching data.
The middle part gives the performance of newly proposed MoE
systems, with external LID (MoE-ext) and built-in LID (MoE-in)
gating networks to learn the MoE coefficients respectively. For
built-in gating networks, supervised and unsupervised modes
correspond A\jjg = 0.1 and A\jjqa = 0.0 respectively. Noted
that the parameters of external LID classifier are counted for
external LID method, thus the parameters are much larger.

SN Cseval
Model #Params ZH EN i BN MIX
Baseline 28.8M  4.62 11.85 | 8.79 28.14 10.89
Large Enc. 552M 430 1134 | 850 27.69 10.58
MoE-ext 624M 325 992 | 7.87 2691 9.94
MoE-in-sup 45.6M 328 999 | 775 2676 9.82
MoE-in-unsup ~ 45.6M 327 994 | 7.70 26.64 9.76
+ CS retrain 45.6M 544 2796 | 734 25.13 9.27

The performance of baselines and MoE systems are shown
in the top and middle parts of Table 2. It is observed that
the proposed bi-encoder based MoE model has better ability
to leverage the monolingual data, and the performance on the
monolingual sets even approaches that of the pure monolingual
systems in Table 1, demonstrating the efficiency of separate en-
coder modeling. Besides, the proposed method also achieves a
significant improvement on code-switching test sets, with up to
10.4% relative error reduction over baseline transformer model.

4.4. Evaluation of different gating networks

Moreover, we compare different LID gating networks for MoE
coefficients, and the results are illustrated in the middle part
of Table 2. For the external LID method, we train a 12-layer
SAN based model for classifying the frame-level LID, and a
pretrained CTC model is used as seed model for initialization
to obtain higher LID accuracy. For the built-in LID method,
only a single linear layer is employed for the LID task. We
also tried to replace the linear layer with a more complicated
LSTM structure, but no further improvements were obtained.
It is observed that the built-in gating networks outperforms ex-
ternal one. For the two modes in built-in gating networks, the
unsupervised mode outperforms the supervised one slightly.

To better improve the system performance on the code-
switching data, we employ transfer learning strategy to retrain
the MoE system with only code-switching training data, and
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the results are shown as the last line of Table 2. Re-finetune
with the domain-dependent code-switching data can get an ad-
ditional gain on the code-switching testing set, however there
will be a large degradation on the domain-mismatched mono-
lingual testing sets.

4.5. Analysis of MoE coefficients

ME coeffients

(a) Mandarin utterance

r”\'r WVW W 1[\ /WWV\‘W

MoE coficient
MoE coef

(c) Code-switching utterance-1 (d) Code-switching utterance-2

Figure 2: Visualization of the unsupervised learned MoE coeffi-
cients auen, of built-in LID method.

We visualize the unsupervised learned MoE coefficients for
differnt utterances, including monolingual Mandarin and En-
glish utterances and code-switching utterances. As shown in
Figure 2(a) and 2(b), when the input utterance is pure Mandarin
or English, in most of the frames the MoE coefficients a.,, are
close to 1 or O for Mandarin and English respectively. From Fig-
ure 2(c) and 2(d), it is observed that the MoE coefficients from
the gating network can perform code-switching well following
the real switch point, which further demonstrates the effective-
ness of the proposed new architecture for code-switching E2E
ASR task.

5. Conclusion and future work

In this paper we proposed a bi-encoder transformer network
based MoE architecture to improve E2E based Mandarin-
English code-switching speech recognition. The proposed new
model has better capacity to leverage monolingual data, which
contributes to its code-switching performance. Besides, we de-
veloped different approaches to learn the MoE interpolation co-
efficients. We also employ transfer learning strategy to better
improve the code-switching performance.

In the future, we plan to study hierarchical attention net-
work to further improve the proposed bi-encoder based MoE
system on the code-switching ASR. we also plan to further im-
proves code-switching ASR with some knowledge distillation
approaches from the monolingual systems.
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