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Abstract
Multilingual automatic speech recognition systems can tran-
scribe utterances from different languages. These systems are
attractive from different perspectives: they can provide qual-
ity improvements, specially for lower resource languages, and
simplify the training and deployment procedure. End-to-end
speech recognition has further simplified multilingual modeling
as one model, instead of several components of a classical sys-
tem, have to be unified. In this paper, we investigate a stream-
able end-to-end multilingual system based on the Transformer
Transducer [1]. We propose several techniques for adapting the
self-attention architecture based on the language id. We analyze
the trade-offs of each method with regards to quality gains and
number of additional parameters introduced. We conduct ex-
periments in a real-world task consisting of five languages. Our
experimental results demonstrate ∼8% to ∼20% relative gain
over the baseline multilingual model.
Index Terms: speech recognition, multilingual, RNN-T, Trans-
former Transducer, language id

1. Introduction
With more than 7000 languages in the world, there is consider-
able interest and importance to support multiple languages in a
single automatic speech recognition (ASR) system. However,
not all languages are widely available, with several falling un-
der the category of low-resource languages. Many of these lan-
guages also share acoustic and/or linguistic structures. To take
advantage of the commonality and harvest rich-resource lan-
guages, multilingual models have been studied over the last two
decades and have outperformed monolingual models for ASR
in low-resource languages [2, 3, 4, 5, 6]. Conventional ASR
concentrates on the area of multilingual acoustic modeling with
a variety of approaches, including new network structure [6, 7],
multi-task learning [8], layer sharing [4], residual learning [9],
knowledge distillation [10], and data augmentation [11]. How-
ever, language-specific pronunciation and language models are
still needed.

In recent years, end-to-end (E2E) ASR has emerged as the
state-of-the-art. E2E multilingual models have been proposed
using different architectures including CTC [12, 13], LAS [14,
15], and RNN-T [16, 17]. These models replace the acoustic,
pronunciation, and language models of n different languages
with a single model. One key finding in the literature is that
multilingual ASR models benefit significantly from the identity
of the language being spoken, i.e., when language ID (LID) is
provided as an input to the model. There have been a variety
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of approaches proposed for leveraging LID. Language gating
was proposed in [13], while [17] used adapter layers to reflect
the amount of training material. LID features have also been
combined with either the input acoustic feature itself [14, 15,
16, 17] or with the target label embedding [15].

More recently, transformer-based architectures [18] have
been applied to ASR systems [19, 20, 1, 21] successfully.
In [22], the author showed that transformers also outperform
RNNs in multilingual end-to-end ASR. In [23], the multilingual
transformer was trained with language information in the out-
put targets, i.e., the target labels were annotated the beginning
and end of sub-words with LID information. This transformer
achieved a significant improvement over their state-of-the-art
residual learning based LSTM model.

In this work, we introduce a streaming E2E multilingual
model based on the work presented in [1]. We introduce several
techniques to parameterize the self-attention module of trans-
formers using language ID, while adhering to the latency con-
straints required for interactive applications. We address the
challenges of training such a model with large-scale real world
data by a set of languages consisting of 5 languages, namely,
Danish, Norwegian, Swedish, Finnish and Dutch.

We propose two novel approaches to include LID informa-
tion that take advantage of the unique structure of the self atten-
tion layer: multi-head and attention span.

• A language specific head that assigns each language to a
specific set of heads during training and inference.

• A language dependent, left-context, self-attention span
that learns the optimal limited left context per language.

We also explore two existing approaches previously used in
other encoder-decoder based E2E architectures and incorporate
them into the transformer transducer (T-T). These include con-
catenating LID with the input acoustic features and language
adaptor modules [17]. Finally, we investigate the combination
of all these approaches and demonstrate that the best result is
obtained by LID concatenation to self-attention inputs in all
layers, and using language-specific attention heads. We demon-
strate relative gains of up to 20% over the baseline multilingual
model with no language-specific parameters.

2. Model Structure
The multilingual and monolingual transformer architecture and
training objective are based on [1]. The model is composed
of three main components: an audio encoder, a label encoder,
and a joint network. The audio encoder maps the input acous-
tic features to higher level representations. The label encoder
similarly encodes the model’s previous non-blank label predic-
tion. The two high level representations are then combined in
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Figure 1: Using language id in the multi-headed attention layer.
The blue components are from basic Transformer while the red
components are language specific.

the joint network, followed by a softmax layer. This archi-
tecture is very similar to the RNN-T model in [24] with the
audio encoder replaced by transformer blocks. The model is
trained end-to-end using the RNN-T training objective [24].
When used with a unidirectional audio encoder, the RNN-T
model provides a streaming implementation as the output does
not depend on future acoustic frames [25]. Here we provide a
brief recap of the RNN-T training objective, for details please
see [24, 1]. Given the input sequence of real-valued vectors
of length T , x = (x1, x2, ..., xT ), and the target sequence of
labels y = (y1, y2, ..., yU ) of length U , RNN-T training ob-
jective defines a conditional distribution P (y∗|x) over all the
possible alignments of x and y, where y∗i can optionally be a
blank label or real label y. The probability of the target label
sequence y is computed by marginalizing this conditional dis-
tribution over all possible alignments y∗ as described in Equa-
tion (1),

P (y|x) =
∑

y∗∈Z(y,T )

P (y∗|x), (1)

where Z(y, T ) is the set of valid alignments of length T for the
label sequence.

Each transformer block in the audio encoder comprises of
a multi-headed self-attention layer followed by a feed-forward
layer. The left side of Figure 1 illustrates the components of
a transformer block. To enable streaming, we use relative posi-
tional embedding [26] inside the self-attention layer and include
only limited left context when computing the current attention
weights. The label encoder is a stack of two LSTM layers. This
is motivated by the findings in [27], where it was established
that the label encoder merely helps the model align input au-
dio and has little impact on the overall performance. The joint
network is a feed-forward network [1].

3. Leveraging Language ID in Transformer
In this section, we present the different approaches to parame-
terize the self-attention module based on LID.

3.1. Language Embedding Concatenation

We use an one-hot vector to represent language id and append
it to the input of multi-headed attention block. Recall that in
the self attention network, Query, Key, and Value are calcu-
lated based on the input features and positional embedding. We
define the Query, Key and Value vectors Qi, Ki, and Vi using
Equation 2, where Xi is the addition of acoustic features and

positional embedding, Qw, Kw, and Vw are the projection ma-
trices, and dl, is the LID embedding vector. As shown, on the
right hand side of the equation, concatenating LID to the input
features is equivalent to having language-specific bias terms:
Ql, Kl, and Vl.

Qi = Qw ∗ [Xi|dl] + bq = Qx ∗Xi +Ql ∗ dl + bq,

Ki = Kw ∗ [Ki|dl] + bk = Kx ∗Xi +Kl ∗ dl + bk,

Vi = Vw ∗ [Xi|dl] + bv = Vx ∗Xi + Vl ∗ dl + bv,

(2)

The final attention is given in Equation 3 where dk is the input
dimension. Note that the LID is not concatenated to the residue
connect (i.e.(x+ AttentionLayer(concat(x, d)))).

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

3.2. Language Specific Attention Head

In a typical self attention network, multiple heads are used to
learn different perspectives of the inputs [18]. The attention
network is defined in Equation 4,

headj = Attentionj(Q,K, V ), j ∈ [1, H] (4)

where H is the number of heads in the attention network. Each
head has a different set of projection metrics.

In this work, we split the attention heads into language-
specific and shared components. Weights associated with the
language-specific heads are trained using data from the associ-
ated language only while the remaining heads are shared across
all languages. Let L and K denote the number of languages and
number of language specific heads. For language l ∈ [0,L− 1]
the language specific heads are given by Equation 5.

LangSpecificHeadsl = concatk∈[1,K](headl∗K+k) (5)

The remaining H− L ∗K heads are common among all
languages and are given by Equation 6.

CommonHeads = concatc∈[L∗K,H](headc) (6)

Finally, the language-specific and common heads are con-
catenated as shown in Equation 7 and projected to a higher di-
mension as the final output of the self-attention network.

MultiHead = concat(LangSpecificHeadsl,CommonHeads)
(7)

3.3. Language Dependent Attention Span

A streaming model is achieved by using left-context only in the
self-attention network. Furthermore, to lower the computing re-
sources during inference we do not use full left context. While
it is possible to manually specify the length of the left context,
in practice we believe there is a language dependency that can
be learned. Different languages might be sensitive to differ-
ent left contexts and thus we introduce a learn-able variable to
represent it. Then for each layer and each language, we add a
masking function that could be imposed on the attention weight.
This function maps a distance between two time-step to a real
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Table 1: Train and Test data per language (in number of utter-
ances)

Language Train Test
da-dk 3.7M 4.2K
fi-fi 3.8M 15K

nb-no 4.9M 3K
nl-nl 9.3M 12K
sv-se 8.2M 15K

value between 0 and 1 similar to [28]. Denote by Ml the mask
generated by the function for language l, we can formulate the
final attention value for language l as Equation 8.

Attentionl(Q,K, V ) = softmax

(
QKT ·Ml√

dk

)
V (8)

3.4. Language Adapter Layers

The concept of adapter layers was introduced in [29] for natural
language processing. In [17], language adapter layers were used
in a LSTM-based speech encoder. Both these approaches used
adapter modules during language-specific fine-tuning. In this
paper, we append language adapter layer right after the Feed-
forward network in the transformer block.

4. Experiments
4.1. Experiment Setup

4.1.1. Languages and Data

We conduct our experiments on a set of five languages that
consist of Danish(da-dk), Norwegian(nb-no), Swedish(sv-se),
Finnish(fi-fi) and Dutch(nl-nl). This set represents a mix of
languages that are generally mutually intelligible (The Nordics
family) in addition to having a large alphabet intersection. For
all of these languages, the training data is anonymized and tran-
scribed by humans. The test sets, sampled from the same dis-
tribution, are similarly anonymized and transcribed by humans.
The amounts of train and test data used per language are sum-
marized in Tables 1. We use two forms of data augmentation
to mitigate overfitting and improve generalization: First, we
augment the data by corrupting the original utterances using
a room simulator, and varying degrees of noise and reverber-
ation [30]. We augment all languages’ data by this method by
a factor of 25. Second, we apply spectral-augmentation [31]
with frequency masking (F = 50, mF = 2) and time masking
(T = 30, mT = 10).

4.1.2. Model architecture and Training Configuration

We use the same acoustic features across all experiments: 80-
dimensional log-Mel filterbanks, computed with a 25 msec
window, shifted every 10 msec. Features from 3 contigu-
ous frames are stacked, resulting in a 240-dimensional vector.
These stacked features are downsampled by a factor of 3 gener-
ating inputs at 30ms frame rate that the audio encoder operates
on. The audio encoder in our model consists of 14 transformer
blocks. See Table 2 for more details on the sizes of the lay-
ers inside the attention block. Every two frames are stacked
into one on the 3rd layer and then un-stacked at 11th. The la-
bel encoder consists of 2 LSTM layers with 2048 hidden units
and a 640-dimensional projection per layer. The outputs of the

Table 2: Transformer encoder parameter setup.

Input feature 240
Dense layer 1 2048
Dense layer 2 1024

Number of attention heads 8
Head dimension 64
Attention layer 1024

Table 3: Comparison of variations of Language Embedding
Concatenation and baseline. The second column shows the rel-
ative increase in number of parameters from the baseline model.

Params WER
Inc.(%) da-dk fi-fi nb-no nl-nl sv-se

Baseline - 14.9 19.7 17.7 14.7 17.9
First 0.02 12.9 19.1 14.7 14.2 16.4
All 0.3 12.3 18.6 14.3 13.8 15.9

All-KQ 0.2 13.2 19.0 14.7 14.3 16.4

audio and label encoders are fed to a joint-network consisting
of 640 hidden units whose output is fed to the softmax layer.
We train this model to output word-piece [32] units in all our
experiments. The multilingual output inventory is constructed
by combining training data from all languages and building a
wordpiece inventory of size 4k.

All the models for experiments presented in this paper are
trained on 8x8 TPU with a per-core batch size of 32 (effec-
tive batch size of 4096). The learning rate schedule is ramped
up linearly from 0 to 4.0e−4 during first 4K steps, it is then
held constant till 50K steps and then decays exponentially to
4.0e−6 till 200K steps. During training we also added a gaus-
sian noise(µ = 0, σ = 0.01) to model weights [33] starting at
10K steps. We did not find dropout to be useful so the models
are trained without dropout.

4.2. Results

As the baseline model, we train a Transformer Transducer
model with all languages. Each training mini batch consists of
utterances from all languages, sampled according to their natu-
ral training data distribution.

4.2.1. Language Embedding Concatenation

We use a one-hot vector of size 16 as our LID vector. We tried
three different variations of concatenating this vector to the self-
attention network: 1/ only injecting this information into the
first layer of the transformer. In RNN-T with LSTM encoders
this approach performed the best [16]. 2/ Injecting LID to all
layers (14 in total) of the transformer stack. And 3/ injecting to
all layers, similar to 2/ but only projecting the LID information
to Query, Key, and not Value. The result is summarized in
Table 3.

Concatenating LID to transformer inputs improves WER
for all languages by an average of 9%. Among the different
variations, injecting LID into every layer has the highest gain
and achieves on average 3% gain over concatenating to the
first layer only. This finding is in contrast to the findings of
a similar approach on an LSTM acoustic encoder [16]. This
may be due to the transformer encoder being much deeper than
the LSTM encoder, causing the LID information to be gradually
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Table 4: Comparison of the Language Specific Attention head
approach when varying total number of attention heads (H) and
language specific ones (K).

H(K) Params WER
Inc.(%) da-dk fi-fi nb-no nl-nl sv-se

8(0) - 14.9 19.7 17.7 14.7 17.9
8(1) -3.01 13.1 19.0 14.7 14.7 17.2
16(0) 30.07 14.4 18.4 16.8 14.1 17.1
16(1) 27.07 12.5 18.2 14.4 14.0 16.2
16(2) 24.06 12.6 18.3 14.5 14.2 16.2
16(3) 21.05 14.6 20.9 16.5 15.8 18.4

“forgotten” by the network in the higher layers. Meanwhile, all-
layer-KQ approach stays in between the baseline and all-layer,
showing that the LID impacts more than the weight distribution
of the attention network.

From the perspective of the extra parameters, concatenating
LID to inputs introduces per-language bias terms in the self-
attention layer. The overall increase in the number of parame-
ters remains very small (0.3% for the best approach).

4.2.2. Language Specific Head

To investigate the effectiveness of our proposed method, we ex-
plored several language-specific head configurations. We in-
crease the total number of heads to 16 to allow experimenting
with more than 1 language-specific head. The results are sum-
marized in Table 4. The baseline configuration is represented
as 8(0), denoting 8 total attention heads and 0 language-specific
ones.

We observe that including a language-specific head results
in significant WER improvements across all languages (com-
pare 8(0) with 8(1), and 16(0) with 16(1)). Furthermore, the
use of language-specific heads results in fewer total parameters
as it affects the size of the Feed-forward layer that projects the
concatenated heads to the output: for each utterance, only its
language-specific and common heads are concatenated, thereby
resulting in fewer parameters in the projection matrix.

The other noteworthy result is that increasing the number of
language-specific heads results in regressions (compare 16(2)
and 16(3) to 16(1)). This can be explained by noting that in
this case, a larger portion of the attention weights are trained
with a smaller effective batch size as language-specific weights
only receive gradients from utterances from their language in
the batch. Also it is worth noting that increasing the total num-
ber of attention heads results in modest improvements (compar-
ing 8(0) and 16(0)) but at the cost of 30% increase in the number
parameters.

4.2.3. Language Dependent Left Context Span

The adaptive span method learns the left context in the range
[0, 128], per language, while the baseline is fixed to 128. As
seen in table 5, this approach results in an average of 7% WER
improvement across all languages while also saving on compute
resources during inference. Memory-wise, this approach will
only introduce negligible constant variables.

4.2.4. Language Adapter Layer

The use of adapter layers helps improve overall performance.
The gains are consistent for all languages as seen from the re-

Table 5: WER results for Language Dependent Left Context ap-
proach. Increase in number of parameters is negligible.

WER
da-dk fi-fi nb-no nl-nl sv-se

Baseline 14.9 19.7 17.7 14.7 17.9
Lang-Specific Span 13.6 19.5 15.0 13.9 16.9

Table 6: WER results when using Adapter layers.

Params WER
Inc.(%) da-dk fi-fi nb-no nl-nl sv-se

Baseline - 14.9 19.7 17.7 14.7 17.9
Adapter 2.15 13.7 18.7 14.7 14.4 16.9

sults in Table 6, especially for smaller-resource languages.

4.2.5. Combination of the Approaches

We investigate whether the combination of the approaches de-
scribed thus far would result in further improvements in perfor-
mance. We find that concatenating LID and learning language-
specific attention heads can result in further improvements.
However, the addition of adapter modules or adaptive language
context causes a regression in performance, suggesting further
tuning of parameters is needed. Table 7 summarizes the results
for the best performing model and compares that to the single-
lang and baseline multi-lang models.

Table 7: Comparison of single-lang and multi-lang models
with the best approach that combines LID concatenation and
language-specific heads.

Model WER
da-dk fi-fi nb-no nl-nl sv-se

Single-lang 12.9 19.3 15.6 11.6 15.1
Multi-lang 14.9 19.7 17.7 14.7 17.9

Concat+Head 12.1 17.7 14.0 13.5 15.8

The baseline multilingual model suffers from regressions in
all languages compared to the single-language counterpart. Our
best proposed approach, the combination of LID concatenation
and language-specific attention heads, can mitigate this regres-
sion. In three of the five languages, it results in improvements of
up to 10% compared to the single-language model. In the two
higher resource languages, the regressions are decreased from
an average of 20% to 10%.

5. Conclusions
We study the use of a Transformer based E2E model as a
streaming multilingal ASR system. We show that careful pa-
rameterization of the self-attention module based on language
ID can significantly improve the performance of the multilin-
gual model. Lower-resource languages in particular see im-
provements over their single language counter parts, but more
work is needed to match or improve the performance of such a
model for higher resource languages.

4744



6. References
[1] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo, and

S. Kumar, “Transformer transducer: A streamable speech recog-
nition model with transformer encoders and rnn-t loss,” arXiv
preprint arXiv:2002.02562, 2020.

[2] A. Waibel, H. Soltau, T. Schultz, T. Schaaf, and F. Metze,
“Multilingual speech recognition,” in Verbmobil: Foundations of
Speech-to-Speech Translation. Springer, 2000, pp. 33–45.

[3] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language
knowledge transfer using multilingual deep neural network with
shared hidden layers,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 7304–
7308.

[4] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual training
of deep neural networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2013, pp.
7319–7323.

[5] S. Thomas, M. L. Seltzer, K. Church, and H. Hermansky, “Deep
neural network features and semi-supervised training for low re-
source speech recognition,” in 2013 IEEE international confer-
ence on acoustics, speech and signal processing. IEEE, 2013,
pp. 6704–6708.
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