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Abstract

Multilingual acoustic models are often used to build automatic
speech recognition (ASR) systems for low-resource languages.
We propose a novel data augmentation technique to improve
the performance of an end-to-end (E2E) multilingual acoustic
model by transliterating data into the various languages that are
part of the multilingual training set. Along with two metrics for
data selection, this technique can also improve recognition per-
formance of the model on unsupervised and cross-lingual data.
On a set of four low-resource languages, we show that word
error rates (WER) can be reduced by up to 12% and 5% rel-
ative compared to monolingual and multilingual baselines re-
spectively. We also demonstrate how a multilingual network
constructed within this framework can be extended to a new
training language. With the proposed methods, the new model
has WER reductions of up to 24% and 13% respectively com-
pared to monolingual and multilingual baselines.

Index Terms: speech recognition, data augmentation, multilin-
gual data, end-to-end systems.

1. Introduction

Acoustic models for state-of-the-art speech recognition systems
are typically trained on several hundred hours of task specific
training data, or more. However, in low resource scenarios often
only a few tens of hours of annotated training data are available.
In these settings, it is possible to take advantage of transcribed
data from other languages to build multilingual acoustic mod-
els [1, 2]. These multilingual acoustic models are then used
to either extract multilingual bottleneck features for subsequent
processing or are directly used as acoustic models after a fine-
tuning step on the low resource language [3—-15].

Data augmentation is another method for improving the
performance of models trained on small amounts of data
by extending the dataset with artificially perturbed copies of
the training data. Augmentation techniques include adding
noise to clean speech [16, 17], vocal tract length perturbation
(VTLP) [18, 19], audio speed and tempo perturbation [20],
SpecAugment [21], and various combinations of these meth-
ods [22]. Another form of data augmentation uses untranscribed
data from the same language after semi-supervised labels have
been created by processing the data automatically with a trained
model. Data created in this fashion is often filtered using
various confidence scores before being added to the training
data pool [23-25]. More recently, methods to build language-
agnostic multilingual ASR systems by transforming the various
training languages into one writing system through a many-to-
one transliteration transducer have been proposed. With these
techniques, it has been shown that multilingual acoustic models
become more robust to issues like code-switching [26].
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In this paper we combine various themes described above:
multilingual processing, augmentation using unsupervised data,
and transliteration across languages, to develop a translitera-
tion based data augmentation technique to create better acous-
tic models in low resource settings. The speed-tempo and
SpecAugment data augmentation techniques described above
can be considered as data augmentation strategies applied at the
input audio/feature level. In contrast, the proposed translitera-
tion method in this paper is a data augmentation method at the
output label level. With this technique a speech utterance origi-
nally transcribed in a particular language can now also be repre-
sented in terms of output symbols of other languages which are
part of the multilingual training. In other words, a multilingual
network is now used as a tool to transcribe audio into various
languages. The newly transcribed data is then added back to the
training data pool along with the original training data to retrain
more accurate multilingual models.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the baseline multilingual acoustic model
trained using the Connectionist Temporal Classification (CTC)
loss function [27]. Section 3 describes how such a model can be
used to process various kinds of data: the original training data
used to build the models, untranscribed data from the training
languages, and also crosslingual data from a language outside
the multilingual training set. We also show how the proposed
multilingual models can be ported to new languages. Section 4
describes experiments and results using the multilingual model
and proposed transliteration scheme on a set of Babel [28] lan-
guages. The paper concludes with a discussion in Section 5.

2. Multilingual CTC Acoustic Models

Similar to acoustic models developed previously, we train a
CTC-based multilingual acoustic model with shared recurrent
layers on a pooled data set drawn from several languages. The
shared recurrent layers are then connected to language specific
output layers as shown in Figure 1. In contrast to similar pre-
vious models, we do not have a bottleneck layer or any lan-
guage specific layers except for the the final output layer of
each language. Instead of using a common symbol set to cover
all the languages, the language specific output layers model
the grapheme sets of each particular language separately. With
this proposed configuration, we encourage the recurrent layers
to first learn a common language representation covering the
acoustic space of the various languages used in training. This
shared representation, available at the output of the last recur-
rent layer, is then projected to language graphemic targets via
the fully connected language specific layers.

To effectively construct the multilingual CTC model, the
model is trained in several stages. In the first step, the model
is trained for a fixed number of epochs, over whole utterances
to minimize an aggregated CTC loss using stochastic gradient
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Figure 1: Schematic of the proposed multilingual AM

descent. This loss is a sum of the individual CTC losses at the
output of each of the language specific layers. In the next train-
ing stage, the model is further improved with “soft forgetting”
where an additional mean-squared error term (“twin loss”) is in-
corporated to the training loss function [29]. In a third training
step, the final multilingual model is constructed by integrating
a “guided loss” term with the CTC loss term [30].

For the training procedure outlined above to be effective, it
is important to augment the training data appropriately. Data
augmentation has traditionally been done at two levels in the
proposed multilingual training framework. In an offline setting,
multiple copies of the multilingual data are first created using
speed and tempo perturbation (0.9 and 1.1x). Additionally,
SpecAugment [21] is employed on the fly to further increase the
diversity of the training data.

3. Transliterating Multilingual Data

As described earlier, we now use the trained multilingual net-
work to transcribe multilingual data into various languages.

3.1. Transliterating training data

Multilingual data is transliterated by passing acoustic features
for each utterance through a trained network and collecting out-
puts at each of the language specific outputs. When a multilin-
gual network is trained on N languages, for each utterance for-
ward passed through the network, N language specific outputs
can be derived. If an utterance being processed is from the set
of training languages, the outputs at the corresponding language
specific layer will be a transcription of the utterance in terms of
the original language, while the outputs at the other (N — 1)
language specific layers will be transliterations of the utterance
into the other training languages. To produce these translitera-
tions, we perform greedy decoding without a language model,
removing only symbol repetitions and the blank symbol. This
relaxes any language specific constraints during the transliter-
ation process and allows for grapheme sequences not present
in a language to be produced when transliterating across lan-
guages. Given that for an utterance, (N — 1) new label se-
quences can be generated, this method has the potential to gen-
erate an N X (N — 1) fold data augmentation.

3.2. Measuring the quality of transliterated data

Finding a suitable measure to select reliable data from a poten-
tially large pool of transliterated data is crucial to the use of
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transliterated data for training. Unlike automatic transcriptions,
whose quality can be measured against reference transcripts,
there is no straightforward measure of transliteration quality,
given that the output labels for an utterance are now in a dif-
ferent language. In our training framework, each utterance in
the pool of multilingual data has a transcript only in the original
spoken language and not in the other languages used to train
the multilingual network. It is therefore necessary to develop a
measure that is indicative of whether a transliterated utterance is
being well represented with the symbol set of the language into
which it has been transliterated, without any reference transcript
for the utterance in the transliterated language.

We propose two metrics that can be used to measure the
usefulness of a transliterated outputs:

1. Symbol count of transliterated output (SC): This measure is
a simple count of the number of symbols in the transliterated
output of an utterance. When an utterance is being translit-
erated into a language different from the spoken language, it
is possible that the acoustic signal cannot be very well repre-
sented with symbols from the target language. We hypothe-
size that for utterances which have been effectively translit-
erated, more symbols will likely be produced by the net-
work, compared to utterances which are poorly transcribed
because of language mismatch.

Ratio of symbol count in a transliterated language to symbol
count of the reference transcript (SR): This measure com-
pares the number of symbols in the transliterated output to
the number of symbols in the utterance’s original reference
transcript. Although it is unlikely that every symbol in the
original spoken language can be mapped to a symbol in a
transliterated language, a higher ratio value can be indica-
tive of a better transliterated output.

An immediate application of creating and selecting transliter-
ated output for data augmentation is with transliterations of the
training data itself. In this case, both the measures described
above are suitable for use. However, as will be detailed in the
following sections, it is possible to also transliterate untran-
scribed audio from the training languages or even data from
languages that are not part of training. In such cases, since a
reference transcript will not be available, the ratio based met-
ric cannot be used. The symbol count metric is however still
useful in those settings. Both of the metrics described above
do not use traditional posterior word or symbol confidences for
the reason that CTC posteriors are often peaky, and hence not
reliable confidence measures for use as a selection metric.

3.3. Transliterating untranscribed data

When multilingual training data is being transliterated, the net-
work is in essence reprocessing data that it has already seen, but
now with different output labels. With the proposed data aug-
mentation, we hypothesize that the network is probably now
able to learn better associations between languages, as a sin-
gle data set is being presented in multiple languages during
training. In a second application, the transliteration scheme
can be used to process untranscribed data, hence introducing
novel data not yet seen by the network into training. Untran-
scribed data belonging to the languages used to train the net-
work can be forward passed through the network. The output
at the output layer corresponding to the spoken language is a
semi-supervised transcription of the utterance. The other net-
work outputs are transliterations of an utterance into the other
training languages. If untranscribed data sets are available in all



the N training languages, this data augmentation scheme can
produce an N X N fold data augmentation.

Given that an actual reference is not available, the SR met-
ric described earlier cannot be readily used to select novel data.
It can however be modified to be the ratio of the output symbol
count in a transliterated language to the semi-supervised output
symbol count in the source language, instead of the reference
symbol count in the source language. The SC metric on the
other hand can be used directly.

3.4. Dealing with crosslingual data

In both the data settings described above, only data from the lan-
guages used to train the multilingual network have been used.
It is however also possible to process data from completely dis-
joint languages and use the transliterated data for augmentation.
In this setting utterances from outside the /N languages used to
train the multilingual network are used. Before the data can be
added to the training data pool, the data is transliterated into the
N training languages. If data from M languages is being used,
with this scheme it is possible to create an M x N fold data
augmentation. For data selection, given that neither reference
nor semi-supervised transcripts are available, only the symbol
count (SC) based metric can be used.

3.5. Extending to new languages

Multilingual networks have been shown to be useful as pre-
trained acoustic models in low-resource settings. A low re-
source acoustic model is constructed with layers initialized
from the multilingual model and a new output layer correspond-
ing to the language. The model is then further fine tuned with
data just from the low resource language. In the current frame-
work, to port the proposed multilingual model to a new lan-
guage and allow for data augmentation using transliteration, an
extended multilingual model with the new language as an addi-
tional data set is instead trained.

Once a low resource language is added to an existing pool
of N languages, a new multilingual model is trained with
(N + 1) language specific layers as described earlier. Given
that the new language is part of the new model, the multilin-
gual data pool can now be transliterated to the new language as
well. An improved multilingual model is then trained with the
additional transliterated data. This procedure can be extended
to include multiple new languages.

4. Experiments and Results

To demonstrate the efficacy of our proposed transliteration
based data augmentation scheme we build CTC based end-to-
end ASR systems on 4 low resource languages. Resources for
these languages — Mongolian (401), Javanese (402), Dholuo
(403) and Georgian (404) — were created as part of the JARPA
Babel program [28]. The full language packs of each of these
languages contain about ~40 hours of transcribed data. An ad-
ditional ~4 hours of data is used as a heldout data set. We
present results on ~10 hour test sets for each of these languages.

Four additional copies of each training data set are first
created using speed and tempo perturbation, producing ~210
hours of data. LSTM based acoustic models are then trained
on these augmented data sets. Each of the monolingual acous-
tic models has 4 bidirectional LSTM layers with 512 units per
direction and a final fully connected layer corresponding to a
language specific output grapheme symbol set. We use 63, 38,
49, and 40 units for 401, 402, 403, and 404 respectively. Af-
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ter 20 epochs of SGD based training to minimize the CTC loss,
the models are trained for 20 more epochs with an additional
soft-forgetting loss. The final models are created after 20 more
epochs of guided training. SpecAugment is also applied to the
input log-mel spectral features to provide on-the-fly data aug-
mentation. We use hyperparameter settings from [29, 30] in
these training steps. The language models (LM) used in our
experiments are all Kneser-Ney smoothed bigram models.

Table 1: Model performance (WER%) with transliterated train-
ing data

Condition 401 402 403 404 Hrs.
[A1] Mono 52.0 562 41.8 444 210
[B1] Mult 484 543 407 44.0 850
[C1] Mult+TL-ALL 479 54.0 40.5 437 1350
[D1] Mult+TL-FL1  46.5 528 393 426 1320
[E1] Mult+TL-FL2 ~ 46.6 52.6 39.1 42.6 1050
[F1] Mult+TL-FL3 46.0 527 39.1 424 1230

Experiment [Al] in Table 1 shows the WER results we
obtain for each language when we train separate monolingual
models. We then pool the different language sets and train a sin-
gle multilingual model with shared LSTM layers and language
specific output layers. Given that more data is available to train
the multilingual model, we increase the number of LSTM layers
to 6 keeping all other training parameters the same. Experiment
[B1] shows the WER results with the multilingual model. The
model already shows significant improvement over the mono-
lingual systems. We now use the trained multilingual system to
transliterate the training data. The 401 training data, for exam-
ple, is now forward passed through the network and outputs at
the 402, 403 and 404 language specific output layers are used as
transliterations of the 401 data into those languages. We limit
the data we process to just the original ~40 hours of data in each
language. This results in ~480 (40x4x3) hours of transliter-
ated data. Experiment [C1] shows the result of adding all the
transliterated data to the training data pool. Although there is
a slight improvement we hypothesize that there could be noisy
data that needs to be filtered out.

In the next set of experiments we explore the use of the
two metrics proposed to measure the usefulness of transliterated
outputs. Experiment [D1] shows the result of using the symbol
count (SC) metric. With this metric we filter out all translit-
erated utterances with less than 3 symbols in the transliterated
output. We also evaluate the usefulness of the symbol ratio (SR)
metric. For experiments [E1] and [F1], we sort all utterances
by their symbol ratios, i.e. the ratio of the symbol count in a
transliterated language to the symbol count of the utterance’s
reference in the original spoken language. As described earlier,
a high ratio value suggests that more symbols were transliter-
ated, suggesting that the symbol set of the language into which
the utterance was transliterated can adequately represent the ut-
terance. In experiment [E1], we select 50 hours of transliterated
data with the highest SR scores, for each language. For experi-
ment [F1] we increase the amount to 100 hours per language.
Both these experiments show the usefulness of the proposed
metric as we now obtain more gains by selecting the appropriate
data. The final multilingual system [F1] with the transliteration
based augmentation and filtering, has a relative improvement of
up to 5% over the baseline multilingual system [B1] and 12%
over the monolingual system performance in [Al]. All these



gains are realized without introducing novel training data and
on top of other input level data augmentation strategies.

Table 2: Model performance (WER%) with untranscribed train-
ing data after transliteration

Condition 401 402 403 404 Hrs.
[A2] Mult+ST 469 535 40.1 439 1000
[B2] Mult+ST+TL  45.8 523 39.1 42.6 1460

As described earlier, the proposed transliteration method
can not only be used to transform multilingual training data,
but can also be applied on untranscribed data. For each of
the language packs, 40 hours of additional untranscribed audio
is available. This data is forward passed through the baseline
multilingual network developed for experiment [B1]. Because
reference transcripts are not available, we select transliterated
outputs using the SC metric, filtering out all transliterated ut-
terances with fewer than 3 symbols in the transliterated output.
We consider transcripts collected at the network outputs cor-
responding to the same underlying spoken language as semi-
supervised transcripts. In a first set of experiments we add ~150
hours of semi-supervised data (40x4) into the data pool to train
a new multilingual model. Experiment [A2] in Table 2 shows
that adding novel data with semi-supervised labels is indeed
useful as the new multilingual network with the additional data
performs better than the baseline multilingual system [B1]. We
then add all the transliterated outputs available at other output
layers to the training pool. Experiment [B2] shows that using
the transliterated outputs along with the semi-supervised out-
puts further improves the performance of the new multilingual
system by up to 5% relative over the baseline system.

Table 3: Model performances (WER%) with untranscribed
cross-lingual data after transliteration

Condition 401 402 403 404 Hrs.
[A3] Mult+CRS1  46.8 535 39.7 432 1390
[B3] Mult+CRS2  47.8 54.1 40.7 440 1430

In a next set of experiments, we investigate if multilingual
data from outside the set of languages employed to train the
multilingual network can be used. We use two different sets of
Babel languages, the first set of cross-lingual languages (CSR1)
include 4 languages from the OP1 phase of the program: Ce-
buano (301), Kazakh (302), Telugu (303), and Lithuanian (304).
The second set of languages (CRS2) includes 4 languages from
the OP2 phase: Pashto (104), Paraguayan Guarani (305), Igbo
(306), and Amharic (307). We use ~40 hours of data from
each of the languages for these experiments and forward pass
both language sets through the multilingual baseline used in
[B1]. This produces ~640 hours (40x4x4) hours of translit-
erated data. After SC filtering we use ~540 and ~580 addi-
tional hours of transliterated data to train two separate multilin-
gual networks. Experiments [A3] and [B3] in Table 3 show the
results of these cross-lingual experiments. In both cases we ob-
serve improvements of up to 3% relative over the baseline mul-
tilingual system, showing that the proposed transliteration of
multilingual data is also useful for languages outside the train-
ing set of the base multilingual network.

In our final set of experiments we investigate how the pro-
posed multilingual model and data augmentation scheme can be
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Table 4: Model performance (WER%) after porting the model
to include a new language

Training condition IT Hrs.
[A4] IT-Mono.(rand)  32.8 200
[B4] IT-Mono.(mult)  31.8 200
[C4] IT-Mult 289 1050
[D4] IT-Mult+TL 25.0 1800

extended for use with a new language. Similar to the data set-
tings used for the Babel languages, we select ~40 hours of tran-
scribed Italian from an internal data collection. As with earlier
experiments, the data set is then expanded with speed and tempo
augmentation to ~200 hours. In experiments [A4] and [B4], we
train two different monolingual systems: one using randomly
initialized weights and the second using LSTM weights from
the multilingual model trained in experiment [B1]. For the lat-
ter experiment, the final language specific layers of the multi-
lingual model are replaced with a randomly initialized language
specific layer with 35 outputs corresponding to the Italian sym-
bol set. Although both the systems are trained with the same
amount of data, the monolingual system in [B4], which is ini-
tialized from a trained multilingual system, performs better. In-
stead of training a separate monolingual system, in the next ex-
periment we integrate an additional Italian output layer to the
original multilingual network with 4 Babel languages and train
anew multilingual system. This system benefits from the multi-
lingual training and enjoys considerably better performance as
can be seen in the results of system [C4]. Similar to previous
experiments, we now transliterate the training pool of 5 lan-
guages. The transliterated data is processed with the SC metric
to select utterances with SC greater than 3. An additional ~750
hours of transformed training data is added to the data pool and
used to retrain a new multilingual system in [D4]. The proposed
data augmentation scheme allows the network to improve per-
formance by 14% relative over the previous multilingual sys-
tem. Compared to the original Italian monolingual system, this
is a very significant 24% relative improvement, without the need
for any additional transcribed Italian data.

5. Conclusion

In this paper we have proposed a new data augmentation tech-
nique useful for building multilingual acoustic models. Cou-
pled with two metrics for data selection, we have demonstrated
how transliterated data generated using these multilingual mod-
els can be used to further improve performance. The efficacy of
our proposed method has been shown on several kinds of data
sets: the original training data used to build the models, untran-
scribed data from the training languages, and also crosslingual
data from outside the set of original training languages. We
have also shown how the proposed multilingual models can be
ported to new languages and how improved models with signif-
icantly lower word error rates can be constructed.
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