INTERSPEECH 2020
October 25-29, 2020, Shanghai, China

Towards Context-Aware End-to-End Code-Switching Speech Recognition

Zimeng Qiul, Yiyuan Li*, Xinjian Li*, Florian Metze*, William M. Campbell’

T Amazon Alexa Al
I Carnegie Mellon University

{zimengqgi, cmpw}@amazon.com {yiyuanli, xinjianl, fmetze}@andrew.cmu.edu

Abstract

Code-switching (CS) speech recognition is drawing increas-
ing attention in recent years as it is a common situation in
speech where speakers alternate between languages in the con-
text of a single utterance or discourse. In this work, we propose
Hierarchical Attention-based Recurrent Decoder (HARD) to
build a context-aware end-to-end code-switching speech recog-
nition system. HARD is an attention-based decoder model
which employs a hierarchical recurrent network to enhance
model’s awareness of previous generated historical sequence
(sub-sequence) at decoding. This architecture has two LSTMs
to model encoder hidden states at both the character level and
sub-sequence level, therefore enables us to generate utterances
that switch between languages more precisely from speech.
We also employ language identification (LID) as an auxiliary
task in multi-task learning (MTL) to boost speech recognition
performance. We evaluate the effectiveness of our model on
the SEAME dataset, results show that our multi-task learning
HARD (MTL-HARD) model improves over the baseline Lis-
ten, Attend and Spell (LAS) model by reducing character error
rate (CER) from 29.91% to 26.56% and mixed error rate (MER)
from 38.99% to 34.50%, and case study shows MTL-HARD
can carry historical information in the sub-sequences.

Index Terms: speech recognition, code-switching

1. Introduction

Code-switching (CS) is a phenomenon when speakers alternate
between two or more languages in the context of a single ut-
terance or discourse. Previous code-switching works focus on
the interplay between multiple languages by modelling the lin-
guistic structure of code-switched utterances [1, 2, 3]. As ma-
chine learning approaches become increasingly popular, statis-
tical methods are also applied to code-switching tasks [4, 5].
While DNN-HMM based ASR models are widely applied to
code-switching speech recognition [6, 7], its weakness in great
model complexity and being unable to be optimized end-to-end
motivate researchers to explore End-to-End (E2E) frameworks.
Similar E2E strategies are pursued to resolve Mandarin-
English code-switching speech recognition in [8, 9]. They both
adopt hybrid CTC and attention-based networks. Unlike DNN-
HMM based approaches, they don’t require efforts in lexicon
modeling and the entire system comprises compactly connected
neural networks that can be jointly learned from scratch. They
also employ a multi-task learning (MTL) [10] approach that en-
hances the E2E ASR system with language identification (LID)
as the auxiliary task to boost the performance of ASR.
However, these approaches fail to incorporate historical in-
formation in the decoding phase. Input-feeding [11, 12] is ap-
plied to basic attention-based speech models to alleviate this
issue [13]. Specifically, they investigate performances of Lis-
ten, Attend and Spell (LAS) model [14] with input-feeding and
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Figure 1: Architecture of MTL-HARD decoder model. The first
LSTM encodes the sub-sequence history and captures longer
context, the second LSTM takes the character-level information
and combines it with first context.

proves that input-feeding can outperform baseline in terms of
CER on code-switching corpora. Though the input-feeding
keeps information about previous alignment decisions between
hidden states of the encoder and decoder, it does not over-
come errors caused by short memory of previous generated
sub-sequence. This is more crucial when it comes to code-
switching scenarios because the distribution of tokens varies
between code-switched and monolingual generated history.

To tackle this issue, we propose Hierarchical Attention-
based Recurrent Decoder (HARD), an attention-based decoder
model which employs a hierarchical recurrent network to en-
hance model’s ability of being aware of previous generated his-
tory sequence at decoding. This architecture has two LSTMs
to model encoder hidden states as shown in Figure.1: Char-
acter LSTM 1is to encode character level information and the
Sub-sequence LSTM is to encode sub-sequence level informa-
tion and is expected to carry the history context within each ut-
terance. Those two-level LSTMs enable our model to generate
utterances that switch between languages more precisely from
speech. Additionally, in order to help the model better decide
which language to predict for next character, we also employ
language identification (LID) as an auxiliary task in multi-task

http://dx.doi.org/10.21437/Interspeech.2020-1980



learning and jointly train the character predictor and LID pre-
dictor. By sharing previous layers between tasks of character
prediction and LID prediction, the character predictor can ben-
efit from having more information of languages that previous
generated characters belong to.

We evaluate the effectiveness of our model on the SEAME
dataset [15]. The character error rate (CER) is improved from
29.91% to 26.56% and mixed error rate (MER, Chinese char-
acter and English word respectively) from 38.99% to 34.50%
compared to the Listen, Attend and Spell (LAS) model [14].

Our contributions are mainly the following: we model each
generated character as a signal of new sub-sequence, and em-
ploy a hierarchical recurrent network [16] in attention-based de-
coder to capture longer history and code-switching information
at decoding, which alleviates the issue that the decoder being
confused where to switch language and hard to generate rea-
sonable results when code-switching occurs frequently within a
single utterance. Additionally, we also employ language iden-
tification (LID) as an auxiliary task in multi-task learning and
jointly train the character predictor and LID predictor with pre-
vious layers shared.

The rest of paper are organized as follows: Section 2 il-
lustrates our proposed models; Section 3 describes the experi-
mental setup. We share experiment results and code-switching
intentions mining in Section 4. Section 5 concludes the work
and addresses the future work.

2. Models
2.1. LAS Baseline

‘We use the state-of-the-art end-to-end speech recognition model
Listen, Attend and Spell (LAS) model [14] as our baseline. The
LAS model is comprised of three parts: the LISTENER, which
encodes the speech features into a high-level representation, the
SPELLER, which generates a sequence of characters based on
the encoded representation, and an attention module between
Listener and Speller. Specifically, the Listener is a pyramidal
bidirectional LSTM (pBLSTM), i.e. a multi-layer LSTM that
halves its sequence length each layer, which outputs a short se-
quence of hidden states h = (h1, ..., hy). The hidden state of
the i*" time step for the j*" layer is given by b7 = f(h!_,, h),
where f denotes the pBLSTM function and h; equals the con-
catenation of h; ' and hj;',.

h] = PBLSTM(h]_,, [h; ', b)) (D

The decoder part consists of the attention module and the
Speller and is defined as ATTENDANDSPELL function. The
function is computed using an attention-based LSTM trans-
ducer. The distribution for output character y; is a function of
the decoder state s; and context c;. The decoder state s; is a
function of the previous state s;_1, the previously emitted char-
acter y;—1 and context c;—1. The context vector c; is produced
by an attention mechanism. Specifically,

¢i = ATTENTIONCONTEXT(s;, h)
S; = RNN(Si—l, yi—l,Ci—l)

(€3
3

where RNN is a two-layer LSTM. At each time step ¢, the AT-
TENTIONCONTEXT generates a context vector c; that encapsu-
lates the information in the acoustic signal needed to generate
the next character.
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2.2. Hierarchical Attention-based Recurrent Decoder

The output character distribution at time step ¢ of the Speller
in the LAS model is conditioned on all previously characters
by using a two-layer LSTM, where the historical information is
stored in its hidden states. However, the input of LSTM cell is
merely the previous character, which is not capable of carrying
generated historical information in long dependencies The re-
sults from LAS on SEAME dataset show that most generated
English tokens are not valid English words. For example, four
three two one is mistaken as forr tweee two one, which are sim-
ilar in pronunciations but vary in spellings. In order to alleviate
this issue, we introduce Hierarchical Attention-based Recurrent
Decoder (HARD) to the ATTENDANDSPELL function while re-
maining the LISTENER in LAS.

At each decoding time step ¢, as mentioned previously,
attention context c¢; is calculated using both encoder hidden
states h and decoder states s;. Instead of vanilla RNN, we
employ a hierarchical recurrent network as HRED architec-
ture [16] to further encode historical and sub-sequence code-
switching information before attention calculation. Namely,
we model each generated character as a signal of new sub-
sequence. Thus, within an utterance, we will have sequences in
character level and sub-sequence level, corresponding to word
level and turn level in [16]. The HRED in our model has one
Character LSTM LSTM; for character level, and a top level
Sub-sequence LSTM LSTMs for sub-sequence level with hid-
den states s} and s; respectively. Given an input character se-
quence X = (z1, %2, - ,ZT),

s; = LSTM1 (s}_1,2i—1)
S; = LSTM2(S@'71, 8;, 01'71)

“
(&)

The character LSTM; hidden states s; depend on both hid-
den states of previous time step s;_; and previous generated
character x;_1 by time step ¢. The sub-sequence LSTM3 hid-
den states s; depend on three inputs: previous time step hidden
states s;_1, attention context ¢;_; and output hidden states s,
from LSTM; at current time step.

The sub-sequence LSTM: captures history within each
sub-sequence and therefore has a better view of intra-language
information, since some sub-sequences are not code-switched.
This intra-language information is helpful to predict more rea-
sonable token sequences for each language. While the char-
acter LSTM; are seeing code-switching transitions and mem-
orizing information in hidden states, which is then fed to the
sub-sequence.

After the attention module, the character distribution func-
tion CHARACTERDISTRIBUTION is employed to predict char-
acter sequence,

P(yi|x,y<i) = CHARACTERDISTRIBUTION(S;,¢;)  (6)
where CHARACTERDISTRIBUTION is an MLP followed by
sampling outputs over the entire character set with Gumbel-
softmax [17]. Namely,

§: = SOFTMAX (P (yi|X,y<i) + 2) )

where z ~ GUMBEL(0, 1), i.e. p(z) = e~ *** 7). The Gum-
bel softmax samples outputs according to the current learned
distribution P and is differentiable.



2.3. Multi-task Learning: Language Identification

We observe that LAS model generates more code-switched ut-
terances and less pure English and Mandarin utterances com-
pared to the ground truth. Therefore, we make an assumption
that if the model knows when to better switch languages, which
leads to the distribution of code-switched, pure English and pure
Mandarin utterances closer to the ground truth. Based on this
assumption, we design the multi-task learning approach, which
jointly learn the character sequence and language id sequence,
where each character has its own language id indicating the lan-
guage it belongs.

We modify the output layer in decoder part, after the AT-
TENDANDSPELL function, in addition to using an MLP with
gumbel softmax to predict the character at each time step
(CHARACTERDISTRIBUTION in Eq. 6), we also employ the
LANGUAGEIDENTIFIER function, which is another linear layer
to predict language id for the character generated at the same
time step simultaneously. Specifically, the language id [ at time
step ¢ is given by

P(l;]x,1<;) = LANGUAGEIDENTIFIER(S;, ¢;) (8)
Moreover, the loss function becomes
L=Xchar +(1—=XN)LrLiD )

where Lcpnqr is the loss of character sequence prediction task,
Lrrp is the loss of language identification task and A is a
hyper-parameter. Architecture of our Multi-Task Learning Hi-
erarchical Attention-based Recurrent Network (MTL-HARD)
is shown as Figure 1.

3. Experimental Setup
3.1. Dataset

‘We evaluate our model as well as the baseline model on SEAME
dataset, a Mandarin-English code-switching speech corpus col-
lected from South-East Asia. We randomly divide SEAME
dataset into train, dev and test set according to a ratio of 8:1:1 in
terms of number of utterance. Statistics are shown in Table 1.
Performances are measured by CER and MER.

Table 1: Statistics of SEAME dataset.

[ Train | Dev | Test
# Utterance 129,217 16,156 16,152
# Token 1,879,778 | 232,360 | 237,487
# EN Token 583,210 73,390 73,470
# CN Token | 1,296,568 | 158,970 | 164,017

3.2. Parameters Setting

We construct our context-aware end-to-end code-switching
ASR system with the same encoder from [14] and our decoder
as described in Section 2.2 and Section 2.3. The hidden dimen-
sion of encoder and decoder LSTMs are 256 and 512 respec-
tively, dimensions of attention key, query and value are 128.
We train and test models in a batch size of 32, using ADAM as
the optimizer with initial learning rate set to 0.001 and weight
decay coefficient to 0.0001. In order to avoid explosion of lower
layer gradients, we clip the norm of the gradients by scaling the
gradients down by the ratio of 0.25 divided by max norm (if this
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ratio is less than 1) to reduce gradients norm. We also performs
early stopping with patience set to 10 and dropout with proba-
bility of 0.5 to prevent models from overfitting. For quick and
efficient training, we employ teacher forcing that use the ground
truth from a prior time step as input and set the rate to 0.9. In
all our experiments, HARD and LAS baseline share the same
parameters as shown above.

4. Results and Analysis
4.1. Model Comparison

Comparison between performances of baseline model (LAS)
and our models in CER and MER on test set is shown in Ta-
ble 2. Apart from MER and CER on all utterances (All), we
also report CER on code-switching utterances (CS), pure Man-
darin utterances (CN) and pure English utterances (EN). Note
that HARD+LID refers to our MTL-HARD model.

Table 2: Model performance comparison. HARD can improve
CER and MER over LAS, and MTL boosts the performance fur-
ther. Therefore, MTL-HARD gives the best performance.

CER (%)
Model MER (%) 5y [ CS | CN [ EN
LAS 3899 | 29.91 | 2831 | 34.34 | 30.29
HARD 3542 | 27.23 | 25.65 | 32.39 | 24.90
LAS <1 3493 | 27.06 | 25.82 | 31.68 | 25.22
HARD .up | 3450 | 26.56 | 25.54 | 30.44 | 24.78

The experimental results demonstrate a significant im-
provement in our hierarchical attention-based recurrent decoder
model over the LAS model. Both MER and CER show consis-
tent trends: while HARD outperforms baseline without multi-
tasking, the language identification task brings additional boost
in performance, and our MTL-HARD model achieves best in
both MER and CER. In terms of fine-grained language spe-
cific CER, HARD with language identification performs best
in code-switching, pure Mandarin and pure English sentences.

The hyperparameter A in Equation 9 introduces a balance
between speech recognition task and language identification
task. Mandarin has a larger vocabulary size than English al-
phabets and dominates the SEAME dataset in terms of number
of tokens. Therefore, a small A does not count such lexicon im-
balance between two languages, and the language identification
task dominates when A is large. Additional to the single task
setting, we conduct a grid search from 0.1 to 0.9, and our model
performs best at A = 0.5, shown in Table 3.

Table 3: Performances of MTL-HARD with different X\ values.
A = 0.5 gives the best performance.

\ CER (%)

Al [ CS | CN | EN
0.1 [ 27.60 | 2634 | 3223 | 25.91
0.2 | 27.81 | 2648 | 32.04 | 27.87
0.3 | 27.29 | 2622 | 30.93 | 26.70
0.4 | 26.80 | 2555 | 31.21 | 25.58
0.5 | 26.56 | 25.54 | 30.44 | 24.78
0.6 | 27.23 | 25.88 | 32.13 | 25.53
0.7 | 27.90 | 26.69 | 32.27 | 26.50
0.8 | 28.84 | 27.84 | 32.58 | 27.35
0.9 | 30.18 | 28.73 | 35.15 | 29.24




Table 4: Examples for different models, where HARD brings improvement by incorporating sub-sequence context. Multi-tasking in
language identification leads to better recognition by converting subword code-switchings into full tokens in English and Mandarin.
And with MTL-HARD, information learned in the history contributes to the recognition of following information, such as from ‘kid’ to
‘children’ in the first example, and from ‘image processing’ to its second mention and ‘paper’ in the second example.

Example #1
Ref: like TRZA X Eebaby bonus & 2 like H & — &5 171 C. 1 LA like people still wouldn’t have enough children ah
(like the baby bonus you give me, I like it just a little bit, therefore I like people still wouldn’t have enough children ah.)
LAS: like /R 9 B i bamibodnass A& like o2 — s B X Hlike builds F 5 then {RALAKT X
HARD: like R FEHEX Hbeyb boaus h #iSslike HJ&— &1 £ 8T LAFklike peopleswtull yollde’t have anough jhiodren ah
LAS + . like VRZAFiX Eebaby pouus TP ER S like FJE— 55 501 ©. 1 Llailike perple wtill $ouldn’t have enough A hildren ah
HARD -up: | like /RIEF X Ebaby Foyes F#flike HIE— 51 £ LLH like people ttull Kinldn t have enought children ah
Example #2
Ref: F A medical R BRHT {F fHimage processing Fibase then -1l /Z % Himage processing Hbase (%A 234 paper
(I have medical because at that time I had a base of image processing then other friends didn’t have bases of image
processing and didn’t have any paper.)
LAS: P Emedical F7E ARET 1EF Himage first aie singapbe d. then & Il B ¥image proseici B IZELE R T 2 Hllpater
HARD: F B medical F N5 Himage plocessinglfilbase fihen E-Ath il & ftiHimage brocesiFlng T Hhase /&’ ¥ ppaper
LAS +ip: F /A medical B 7 B} {775 H image prrsessnng fibase then 25t i /2 m7 image proc.ssnng afhpasi FH i paper
HARD -up: | FFmedical F W EHK T Hinage processing Hjbase hen B I 7% Himage processing fbase % H 1T paper

We also conduct study on how MTL-HARD incorporates
sub-sequence history in recognition, and show some examples
in Table 4. The first example has a consistent topic about child,
since keywords baby and children are indicated in the reference
sentence. The LAS model performs poorly and fails to recog-
nize both keywords. Adding LID to LAS model improves the
model and could recognize baby and still fails to generate chil-
dren as LAS model is not good at capture long context as men-
tioned above. In contrast, our MTL-HARD model overcomes
this issue as shown in the last sentence: the context of baby
are carried along the sequence helps the recognition of chil-
dren. Similarly, in the second example, it helps in the second
mentions of image processing and paper. Additionally, multi-
tasking helps convert subword code-switching cases into full
English/Mandarin tokens.

4.2. BPE vs Character

Applying byte-pair encoding (BPE) on English shows improve-
ment of word error rate (WER) over purely character level mod-
els [18, 19, 20]. However, our experiments reveal that BPE does
not improve code-switching speech recognition performance
in terms of CER and MER. In detail, our BPE model applies
pre-trained subword tokenizer mentioned in [21] to English,
while keeping it in character level for Mandarin. We compare
BPE model in subword corpus size of 1000, 3000 and 10000,
named as BPE-1k, BPE-3k and BPE-10k respectively. Using
our MTL-HARD model and set A\ = 0.5, the results are shown
in Table 5.

Table 5: BPE versus character based model in CER and MER.

, CER (%)
Unit MER (%) —2m T s | oN | EN
BPE-10k | 3647 | 4023 | 4123 | 3545 | 4487
BPE-3k | 3892 | 4130 | 4225 | 37.58 | 4327
BPE-Ik | 30.18 | 38.86 | 39.54 | 36.10 | 40.53
Chars 3450 | 2656 | 25.54 | 3044 | 24.78

We can infer from the results that small subword corpus
tends to yield better CER numbers - character model can be re-
garded as a subword model whose corpus contains only 26 units
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for English. Thus, these three models share the same Man-
darin corpus while vary in English subword corpus, which is
consistent with the fact that they achieve relatively approaching
CER on Mandarin, while more significantly differ in English
and code-switching utterances.

Regarding MER, though character model still achieved best
MER, BPE-1k performs worse than BPE-3k and BPE-10k and
the differences among three models are smaller compared with
CER numbers. One possible explanation for BPE-10k beating
BPE-1k is that subwords in larger corpus are more closer to
full words - a smaller vocabulary size will yield a segmentation
into many subwords, while a large vocabulary size may leave
frequent words unsplit. For example, the word “hollywood”
is splitted as ‘h’, ‘ol’, ‘Iy’, ‘w’, ‘ood’; ‘hol’, ‘ly’, ‘wood’ and
‘hollywood’ with BPE-1k, BPE-3k, and BPE-10k tokenizations
respectively. Another reason which can lead to BPE being out-
performed by character based model in our experiments is the
distribution of Mandarin and English tokens. From Table 1 we
can observe the domination of Mandarin tokens over English
tokens, thus when calculating MER, error rate on Mandarin to-
kens weighs more than it on English tokens.

5. Conclusion and Future Work

In this work, we propose Hierarchical Attention-based Recur-
rent Decoder, an attention-based model which employs a hi-
erarchical recurrent network to increase model’s awareness of
previous generated context sequence at decoding. Our model
improves CER and MER significantly on SEAME dataset over
LAS model. We also find that jointly learning language id and
speech recognition boosts model performance. Although re-
ported to be able to improve WER in recent works, BPE does
not outperform character based model in terms of CER and
MER.

Moreover, we plan to conduct experiments on pre-training
the model on monolingual English and Mandarin speech dataset
to boost the performance of English tokens recognition. And we
would like to incorporate an advanced code-switching language
model for re-scoring and vocabulary expansion to resolve the
issue that ASR model often fails to generate reasonable English
tokens.
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