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Abstract
Voice conversion (VC) is to convert the source speaker’s voice
to sound like that of the target speaker without changing the
linguistic content. Recent work shows that phonetic posterior-
grams (PPGs) based VC frameworks have achieved promising
results in speaker similarity and speech quality. However, in
practice, we find that the trajectory of some generated wave-
forms is not smooth, thus causing some voice error problems
and degrading the sound quality of the converted speech. In this
paper, we propose to advance the existing PPGs based voice
conversion methods to achieve better performance. Specifically,
we propose a new auto-regressive model for any-to-one VC,
called Auto-Regressive Voice Conversion (ARVC). Compared
with conventional PPGs based VC, ARVC takes previous step
acoustic features as the inputs to produce the next step outputs
via the auto-regressive structure. Experimental results on the
CMU-ARCTIC dataset show that our method can improve the
speech quality and speaker similarity of the converted speech.
Index Terms: Auto-regressive voice conversion (ARVC), Pho-
netic posteriorgrams (PPGs), LPCNet

1. Introduction
Voice conversion (VC) aims to modify the source speaker’s
voice to sound like that of the target speaker while keeping the
linguistic content unchanged. VC is an important research topic
due to its wide applications, such as development of personal-
ized speaking aids for speech-impaired subjects [1], novel vocal
effects of singing voices [2, 3], and a voice changer to generate
various types of expressive speech [4].

The conventional voice conversion approach usually needs
parallel training data, which contains pairs of the same tran-
scription utterances spoken by different speakers. Parallel VC
first aligns acoustic units between source and target speech by
dynamic time warping, then a conversion model is learned to
map speech from source to target speaker. Several statisti-
cal conversion models have been proposed, including Gaus-
sian mixture models (GMM) [5], exemplar-based models [6]
and neural networks [7]. Recently, the sequence-to-sequence
(seq2seq) model with attention has been studied for parallel
VC [8, 9]. Compared with conventional methods, this method
can achieve better naturalness and speaker similarity. However,
problems such as mispronunciation and training instability have
also been observed while training the seq2seq VC model [9].

When parallel training data is unavailable, there are also
some methods for non-parallel VC. Variational autoencoder
(VAE) [10] has been successfully proposed for non-parallel VC

[11, 12]. However, VAE suffers from over-smoothing. To ad-
dress this problem, generative adversarial network (GAN) [13]
and its variants (such as CycleGAN [14, 15] and StarGAN
[16, 17]) use a discriminator that amplifies this artifact in the
loss function. However, these methods are hard to train, and
the discriminator’s discernment may not correspond well to hu-
man auditory perception, thus degrading the sound quality of
the converted speech. Recently, there is another track of re-
search [18, 19] that applies phonetic posteriorgrams (PPGs) for
non-parallel VC. PPGs are of frame-level linguistic informa-
tion representations obtained from the speaker-independent au-
tomatic speech recognition (SI-ASR) system. The PPGs based
VC frameworks mainly have two key components: the conver-
sion model and the vocoder. The conversion model converts
PPGs extracted from the source speech into acoustic features of
the target speaker. Then the vocoder uses these converted fea-
tures to synthesize the speech waveform of the target speaker.
However, in practice, we find that the trajectory of some gener-
ated waveforms is not smooth, thus causing some voice errors.

Vocoders influence the speech quality of the converted
speech. Several parametric vocoders have been proposed for
VC, including STRAIGHT [20] and WORLD [21]. However,
these vocoders limit the quality of generated speech. To deal
with this problem, neural vocoders are widely studied and uti-
lized for speech generation. WaveNet [22] is one of the most
successful neural vocoders, which is proposed for direct wave-
form modeling and generation in a data-driven manner. How-
ever, since WaveNet relies on sequential generation of one audio
sample at a time, it is hard to deploy in a real-time production
setting. Recently, an efficient neural vocoder, called LPCNet
[23] is proposed. Compared with WaveNet, LPCNet can gen-
erate speech in real time. Meanwhile, since LPCNet depends
directly on the linear predictive coding filter shape, it can better
control over the outputs of the spectral shape. Therefore, we
apply LPCNet vocoder for speech generation in this paper.

In this paper, we propose a new auto-regressive model
for any-to-one voice conversion, called Auto-Regressive Voice
Conversion (ARVC). As shown in Figure 1, ARVC produces the
next step acoustic features based on two inputs: 1) the predicted
acoustic features of the previous step; 2) the PPGs extracted
from the source speech. Our ARVC is an extension of conven-
tional seq2seq base VC [8, 9] and PPGs based VC [18, 19].
Compared with conventional seq2seq base VC [8, 9], ARVC
removes the attention-based duration conversion module since
PPGs already contain the duration information, thus reducing
mispronunciation and improving training stability. Compared
with conventional PPGs based VC [18, 19], ARVC takes pre-
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vious step acoustic features as the inputs to produce the next
step outputs via the auto-regressive structure, thus generating
smooth trajectory and causing less voice error problems.

The main contributions of this paper include three aspects:
1) We propose a novel framework, ARVC, for any-to-one voice
conversion. Our ARVC is the extension of conventional ap-
proaches, which incorporates previous step outputs via the auto-
regressive structure; 2) We apply an efficient neural vocoder
LPCNet for speech synthesis, since LPCNet can better control
over the outputs of the spectral shape, and is able to generate
speech in real time [23]; 3) Experimental results on the popular
benchmark datasets CMU-ARCTIC demonstrate the effective-
ness of our ARVC. Our method provides a significant increase
in the speech quality and speaker similarity.

2. Proposed Method
A block diagram of our auto-regressive model for voice conver-
sion is shown in Figure 1. It consists of three key components:
(1) Encoder; (2) Decoder; (3) Waveform synthesis. Specifically,
we use the frame-level linguistic features, PPGs, as the inputs.
The encoder maps the input PPGs into the context-dependent
representations. Then the decoder predicts acoustic features
from the encoder outputs. In the end, LPCNet is conditioned
on the predicted acoustic features for waveform synthesis.

During training, the input speech is the same as the output
speech. These waveforms are selected from the target speaker’s
corpus. At run-time, the input speech is selected from the
source speaker’s corpus. Our ARVC aims to modify the source
speaker’s voice to sound like that of the target speaker.

Figure 1: Block diagram of the ARVC system architecture.

2.1. Encoder

The input of the encoder is a sequence of PPGs, which is the
frame-level linguistic information representation obtained from
SI-ASR. We then apply a set of non-linear transformations to
the inputs, calling pre-net [24]. The pre-net contains a bottle-
neck layer with dropout, which helps convergence and improves
generalization. The outputs of the pre-net are fed into a CBHG

module [24] to produce the final results of the encoder. The
CBHG module is able to learn high-level context-dependent
representations. It consists of a bank of 1-D convolutional fil-
ters, followed by highway networks and a bidirectional gated
recurrent unit (GRU).

Specifically, we assume the inputs asX = [x1, x2, ..., xN ],
where X ∈ RN×dx . Here, N and dx are used to represent the
sequence length and feature dimensions of PPGs, respectively.
The output sequence of the encoder H = [h1, h2, ..., hN ]
(where H ∈ RN×dh ) is calculated as follows:

G = PreNet(X) (1)

H = CBHG(G) (2)
where G = [g1, g2, ..., gN ], G ∈ RN×dg is the outputs of the
encoder’s pre-net.

2.2. Decoder

The decoder is an auto-regressive model that predicts a se-
quence of acoustic features from the encoder outputs. It consists
of an attention layer, an LSTM layer and a pre-net.

Specifically, we assume the acoustic features as O =
[o1, o2, ..., oN ], where O ∈ RN×do . At every output step i, the
attention layer produces the fusion representation fi ∈ R1×d,
given the previous step acoustic features oi−1 ∈ R1×do and the
encoder outputs hi ∈ R1×dh . It is calculated as follows:

fcat = [oi−1Wo;hiWh] (3)

Pf = tanh(fcatWf ) (4)
αatt = softmax(Pfwf ) (5)

fi = αT
attfcat (6)

where Wo ∈ Rdo×d and Wh ∈ Rdh×d are trainable parame-
ters. These matrices are used to equalize feature dimensions of
all inputs to size d. Here, fcat ∈ R2×d are concatenated rep-
resentations. And Wf ∈ Rd×d and wf ∈ Rd×1 are trainable
parameters. αatt ∈ R2×1 are attention vectors over two inputs.

Then, the LSTM layer produces outputs odi , given the pre-
vious step hidden state hd

i−1 and the fusion representation fi.
Finally, the LSTM outputs odi are passed into a pre-net, to pre-
dict acoustic features oi ∈ R1×do for speech generation. These
procedures are summarized as follows:

odi = LSTM(fi, h
d
i−1) (7)

oi = PreNet(odi ) (8)

2.3. Waveform Synthesis

Vocoders influence the quality of converted speech. In this pa-
per, we choose the LPCNet vocoder [23] for speech generation.
LPCNet is a WaveRNN [25] variant that uses the neural net-
works to generate speech samples from Bark-Frequency Cep-
stral Coefficients (BFCCs) [26], pitch period and pitch correla-
tion parameters. This has the advantages of better control over
the outputs of the spectral shape since it depends directly on the
linear predictive coding filter shape.

In this work, we use the code published by the Mozilla team
[23] with some modifications. To better control high frequency
features, we increase 18-dimensional BFCCs to 30-dimensional
BFCCs. In the meantime, we utilize OpenBLAS to accelerate
the LPCNet inference. Therefore, our acoustic features O con-
tains 30-dimensional BFCCs, 1-dimensional pitch period and
1-dimensional pitch correlation. Totally, the feature dimension
of the acoustic features is do = 32.
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2.4. Model Training

We assume predicted acoustic features as Ô = [ô1, ô2, ..., ôN ]
and the ground truth acoustic features as O = [o1, o2, ..., oN ].
We choose the L2 loss function during training. The calculation
formula is shown as follows:

L =

N∑
i=1

||oi − ôi||2 (9)

In this paper, to reduce the mismatch between training and
inference stages, we use the schedule sampling approach [27].
During training, at every output step i, we randomly decide
whether we use the ground truth of the previous step oi−1 or
the estimate ôi−1, to generate the inputs of the decoder. At run-
time, the predicted acoustic features of the previous step ôi−1 is
fed to produce the next step outputs.

3. Experimental Databases and Setup
In this section, we first present our experimental databases for
voice conversion. Then, we illustrate implementation details of
our ARVC. Finally, several baseline models are presented, and
utilized to evaluate the performance of our proposed method.

3.1. Corpus Description

The CMU-ARCTIC American English database [28] is a pop-
ular benchmark database for voice conversion. It consists of 4
native American English speakers (2 male BDL and RMS, 2
female CLB and SLT), and each speaker has 1,134 sentences.
Our voice conversion experiments are conducted on these four
speakers. Intra-gender and inter-gender conversions are con-
ducted between following pairs: RMS to BDL (M2M), CLB to
SLT (F2F), SLT to BDL (F2M) and BDL to SLT (M2F). We use
1,000 sentences for training, and another 20 non-overlap utter-
ances of each speaker are utilized for evaluation.

3.2. Implementation Details

To extract PPGs from the input speech, we use a time-delay
neural network long short term memory (TDNN-LSTM) based
acoustic model. This acoustic model is implemented using the
Kaldi toolkit [29] and trained on our 20,000 hours corpus. The
acoustic features used for training are 40-dimensional filter-
bank features, computed with a 25ms window size and 10ms
window shift. Outputs of the last LSTM layer are utilized as the
frame-level lexical features, PPGs. Totally, 512-dimensional
PPGs (where dx = 512) are extracted for each input waveform.

In the ARVC encoder, the pre-net is a dense layer with a
dropout of 0.5, and the output dimension is dg = 512. The
CBHG module has K = 16 sets of 1-D convolutional filters,
where the k-th set contains 128 filters of width k (k ∈ [1,K])
with ReLU activation. These outputs are max pooled with stride
of 1 and width of 2, followed by a convolution layer with width
of 3 and 512 output channels. Then we add the CBHG’s in-
puts to the convolutional outputs with a residual connection, fol-
lowed by a dense layer with a 128 output dimension. The high-
way network consists of 4 layers of fully-connected layers with
a 128 output dimension, followed by a bidirectional GRU (128
units for each GRU component). Finally, we concatenate the
outputs of two GRU components together, thus generating 256-
dimensional context-dependent lexical features (dh = 256).

In the ARVC decoder, the attention layer fuses previous
step acoustic features and encoder outputs, and the output di-
mension is d = 256. These fusion representations are fed into

a 2-layer LSTM with 1024 cells. To improve the robustness to
perturbations in the hidden state, LSTM layers are regularized
using zoneout [30] with probability 0.1. To predict acoustic fea-
tures for speech generation, we pass the outputs to the pre-net
with a dropout of 0.5, and the output dimension is do = 32.

To optimize parameters, we use the Adam optimizer with
β1 = 0.9, β2 = 0.999, and the initial learning rate is 0.001,
with the Noam decay scheme [31]. We train our models for at
least 100k steps with a batch size of 32. Gradient clipping is
also utilized for regularization with a norm set to 1.0.

3.3. Baseline Models

For comparison, we implement following state-of-the-art base-
line approaches to comprehensively evaluate the performance
of the proposed ARVC (Proposed):

System I (S1) [32]: It employs SI-ASR and Kullback-
Leibler Divergence (KLD) based mapping approach to voice
conversion without using the parallel training data. The acous-
tic difference between source and target speakers is equalized
with SI-ASR. KLD is chosen as a distortion measure to find an
appropriate mapping from each input source speaker’s frame to
that of the target speaker. Finally, the STRAIGHT vocoder [20]
is used to generate the converted waveform.

System II (S2) [33]: It achieves top rank on naturalness and
similarity in Voice Conversion Challenge 2018 [34]. Firstly, the
acoustic features of the source speaker (including Mel-cepstral
coefficients (MCCs), F0 and band aperiodicities (BAPs)) are
converted toward the target speaker using an LSTM-based con-
version model. Then, the waveform samples of the converted
speech are synthesized by sending the converted acoustic fea-
tures into the WaveNet vocoder built for the target speaker. We
try our best to reproduce the work in [33]. However, compared
with the original system in [33], there are still two major differ-
ences: (1) There is no manually correction for F0 extraction er-
rors, nor removal of speech segments with irregular phonation.
(2) Due to the limited training data for VC, Liu et al. [33] train
a speaker-dependent WaveNet by adapting a pre-trained multi-
speaker model for the target speaker. Differently, we have rel-
atively enough data to train WaveNet. Therefore, we only train
the WaveNet in S2 using the target speech.

4. Results and Discussion
We compare our method with the state-of-the-art baseline ap-
proaches in terms of both objective and subjective measures.
Speech samples from the following experiments are available
online at https://zeroqiaoba.github.io/AR-voice-conversion.

4.1. Objective Evaluation

We conducted objective evaluation to assess the effectiveness of
our ARVC. Mel-cepstral distortion (MCD) is employed as the
objective measure to evaluate how close the converted speech is
to the target speech. Concretely, MCD is the Euclidean distance
between the Mel-cepstral coefficients (MCEPs) of the converted
speech and the target speech. The MCEPs used for MCD calcu-
lation are 80-dimensional features, computed with a 25ms win-
dow size and 10ms window shift. Ideally, the lower MCD indi-
cates the better performance of the voice conversion model. In
this paper, MCD of one frame is calculated as follows:

MCD[dB] =

√√√√ 1

F

F∑
f=1

(
20log10

cf
cconv
f

)2

(10)
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(a) MOS test results with 95% confidence intervals to assess speech quality (b) Same/Different paradigm to assess speaker similarity

Figure 2: Subjective test results for our proposed method and two baseline models.

Table 1: Comparison of the Mel Cepstral Distortion (MCD)
between the proposed ARVC and two baseline systems. Note:
Bold front denotes the best performance.

Conversion pairs S1 S2 Proposed
SLT→BDL 9.16 8.34 6.92
RMS→BDL 10.48 9.82 9.10
CLB→SLT 10.79 10.50 9.27
BDL→SLT 10.37 10.23 9.22

where cf and cconv
f are the f th coefficient of the target MCEPs

and the converted MCEPs, respectively. And F is the feature
dimension of the MCEPs.

The MCD results of objective evaluations are presented in
Table 1. Experimental results show that our ARVC outperforms
S1 in all conversation pairs. The reason lies in that S1 uses the
STRAIGHT vocoder for speech generation. While S2 adopts
the LPCNet vocoder to reconstruct waveform from the con-
verted acoustic features. These results verify the advantages
of the LPCNet vocoder for speech generation. Meanwhile,
our proposed method outperforms two baseline methods in all
cases. By feeding previous step acoustic features to predict the
next step outputs via the auto-regressive structure, our method
generates more smooth trajectory of waveforms. Therefore, our
ARVC achieves better performance than S1 and S2.

4.2. Subjective Evaluation

Following previous works [19, 35], the quality of the speech
samples and their similarity to the target speaker are evalu-
ated using the subjective evaluation. The Mean Opinion Score
(MOS) tests are conducted to assess speech quality. In the MOS
tests, listeners are asked to rate the converted speech on a 5-
point scale, ranging from 1 (completely unnatural) and 5 (com-
pletely natural). Meanwhile, we conduct the Same/Different
paradigm to assess speaker similarity. In this test, the listeners
are asked to compare and select whether the converted samples
are uttered by the same target speaker. In practice, 12 subjects
with normal hearing participate in all tests. 20 utterances in
the test set for each conversion pair are randomly selected and
converted using our proposed method and two baseline meth-
ods. The listeners are asked to use headphones and samples are
shown to them in a random order.

The results of subjective evaluations are presented in Figure

2. Figure 2(a) and Figure 2(b) show the MOS test results and
similarity test results of the conversion performance on CMU-
ARCTIC English database, respectively. Results showed in
Figure 2 suggest that the performance of our proposed method
significantly outperforms that of S1 in all the conversion pairs.
These results suggest that the LPCNet vocoder significantly out-
performs that of the STRAIGHT vocoder in terms of speech
quality and speaker similarity.

As shown in Figure 2, experimental results show that our
proposed method achieves slightly better performance than S2
in all cases. Meanwhile, from the additional listener’s feedback,
we observe that our proposed method suffers from less voicing
error problems compared with S2. Compared with S2, our pro-
posed method takes previous step acoustic features as the inputs
to produce the next step outputs via the auto-regressive model.
Therefore, our ARVC can generate more smooth trajectory and
achieve better performance than S2.

5. Conclusions
In this paper, a novel auto-regressive model is proposed
for voice conversion, called auto-regressive voice conversion
(ARVC). Compared with conventional PPGs based VC, ARVC
takes previous step acoustic features as the inputs to produce
the next step outputs via the auto-regressive structure. Then the
LPCNet vocoder uses these predicted acoustic features to syn-
thesize the speech waveform of the target speaker. To verify the
effectiveness of our proposed method, we conduct experiments
on the popular benchmark database, CMU-ARCTIC. Experi-
mental results show that our proposed method outperforms two
state-of-the-art baseline approaches in terms of speech qual-
ity and speaker similarity. Meanwhile, from the additional lis-
tener’s feedback, we observe that our proposed method suffers
from less voicing error problems.
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