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Abstract
An impressionist is the one who tries to mimic other people’s
voices and their style of speech. Humans have mastered such a
task throughout the years. In this work, we introduce a deep
learning-based approach to do voice conversion with speech
style transfer across different speakers. In our work, we use
a combination of Variational Auto-Encoder (VAE) and Gen-
erative Adversarial Network (GAN) as the main components
of our proposed model followed by a WaveNet-based vocoder.
We use three objective metrics to evaluate our model using
the ASVspoof 2019 for measuring the difficulty of differen-
tiating between human and synthesized samples, content ver-
ification for transcription accuracy, and speaker encoding for
identity verification. Our results show the efficacy of our pro-
posed model in producing a high quality synthesized speech on
Flickr8k audio corpus.
Index Terms: Speech Synthesis and Spoken Language Gener-
ation, voice conversion, Speech-to-Speech model

1. Introduction
Recently, deep neural networks have been widely used for
speech synthesis using different techniques such as text-to-
speech (TTS) [1–5] and speech-to-speech based approaches
[6–8]. Despite the significant improvement in the synthesized
audio quality introduced by [1], TTS based approaches tend to
miss the emotional characteristics in the speech sample for a
given speaker. We argue that using a similar approach as in
speech-to-speech systems can overcome such a problem and
improve the synthesized speech quality.

Speech style transfer is the process of synthesising speech
sample from one source speaker to a different target speaker
while keeping the linguistic and speech style the same. In this
work, we introduce a speech-to-speech neural network that is
able to transfer the speech style across different speakers. Our
approach consists of two primary steps. Firstly, given a mel-
spectrogram speech utterance input, we train VAE-GAN model
to reconstruct the input sample using L1-loss for the target
speaker and GAN loss for other different speakers. To further
refine the model performance, we introduce the latent space loss
on the VAE encoder features embedding as well as cycle con-
sistency loss [9]. The training is performed end-to-end in an
unsupervised manner without any alignments between the in-
put samples. Secondly, we train WaveNet-based vocoder on
the VAE-GAN mel-spectrogram outputs to generate the syn-
thesized speech in the time domain. Our method is inspired
by a recent image-to-image style transfer model [10] applied to
mel-spectrograms. Our method uses a single encoder for all in-
put speakers to make it more feasible to generalize to multiple
target speakers. Moreover, we introduce the latent loss to fur-
ther constrain the encoded features in eliminating input speaker
identity. This allows us to generate natural human-like synthe-
sized speech with a unique style for each speaker.

We use three different objective metrics to evaluate our
model, namely the ASVSpoof [11] for measuring the difficulty
of distinguishing between the synthesized and real human sam-
ples, content verification for evaluating integrity in transferring
the linguistic information between the source and the target
speakers, and speaker encoding [7] for validating the speaker
identity in the synthesized speech samples. Experimental eval-
uations on the Flickr8k audio corpus [12] show the effectiveness
of our method in generating human-like speech samples while
capturing the linguistics and speech style of the input speaker.

2. Related Work
2.1. Speech Synthesis

We focus our discussion on neural network based speech syn-
thesis methods that are relevant to our current work. Hasegawa-
Johnson et al. [13] proposed a sequence-to-sequence model
to generate spoken description from the input image in the
image2speech problem. They used both Flickr8k [12] and
SPEECH-COCO [14] corpora to show the intelligibility of their
model in generating relevant words and sequence them in a
meaningful sentence. Jia et al. [7] proposed a neural network
model to tackle TTS problem to generate synthesized speech for
a given speaker. Their model contains three independent com-
ponents; Speaker encoder, Synthesizer, and a neural vocoder
based on Tacotron 2 [2]. They showed that their model is ca-
pable of synthesize speech for unseen speakers based on the
features embedding coming from the speaker encoder model.
Biadsy et al [6] introduced a speech-to-speech model named
Parrotron where it is trained end-to-end. They used their model
for speech normalization where they map input spectrogram of
different speakers to an output spectrogram of a single target
speaker. Their model is trained to transfer the linguistic content
to the target speaker while ignoring non-linguistic content. Our
proposed model defers from Biadsy et al [6] work by preserv-
ing both the linguistic content as well as the speech style of the
input speaker and transfer them to the target speaker.

2.2. Neural Style Transfer

A notable amount of work has been introduced to tackle the
style transfer problem mostly in the image domain. Liu et
al. [10] proposed the UNIT model for image-to-image trans-
lation from one domain to another in an unsupervised manner,
which is the major inspiration of the current work. This model
consists of one encoder, generator, and a discriminator for each
input/target domain [15]. In the audio domain, Mor et al. [16]
presented a multi-domain WaveNet autoencoder to translate an
input music record to different musical instruments and styles.
Their model consists of one encoder and different target de-
coders each for target instruments. They used a domain con-
fusion network to constrain the encoder not to memorize the
input signal and produce a semantic encoding instead. In our
work, we tackle the style transfer problem in the frequency do-
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Figure 1: The overall pipeline of our proposed model. The VAE-
GAN network is trained independently from the vocoder model.

main using mel-spectrogram input/output instead of the time
domain with waveforms. This helps us to have a more stable
and faster training procedure while having simpler model archi-
tecture compared to [16] where they used a WaveNet model for
both their encoder and decoders subnetworks.

3. Methods
In this section, we describe in detail the model architecture
and the training procedure of our method. Fig 1 shows the
overall pipeline of our method. The input to the system is a
speech signal of one speaker, which is converted to the target
speaker’s voice while keeping the content and style of the orig-
inal speaker. The input speech signal is first converted to the
mel-spectrogram representation (details in Sec 4.1). We then
employ a neural style transfer model similar to [10], treating
the input mel-spectrogram as a gray-scale image, to create an
output mel-spectrogram with the style of the target speaker.
The generated mel-spectrogram is then fed to the vocoder to
reconstruct the speech signal in the time domain. We use the
WaveNet vocoder [17] based on the open-source implementa-
tion [18].

3.1. Framework

The core components of the neural style transfer model are a
pair of convolutional neural networks, corresponding to the en-
coder and generator (decoder), Fig.1. The encoder preserves
the linguistic information in the input speech while removes
identity-related information, the generator combines the style
and the content of the input speech signal to create the mel-
spectrogram of a new speech signal. To ensure the encoder
capture identity-independent attributes such as speech volume
and tempo, there is one single encoder regardless of the iden-
tities of the input speakers. We assume that using a shared en-
coder for the different speakers will imply a shared-latent space
z that contains each sample content while removing the original
speaker identity.

The architecture of the encoderE has three main parts. The
first part contains the initial convolutional layer with 7×7 kernel
size and no stride. The second part has two down-sampling
convolutional layers with 4×4 kernel size and stride of 2. Each
convolutional layer is followed by a batch normalization [19]
and a LeakyReLU non-linear activation function. The third part
consists of three residual blocks [20] as a final feature extractor.

Each of the different generators (G1 to Gn where n is the
number of target speakers) consists of the same parts as the en-
coder E but in reverse order with two exceptions. First, instead
of convolutional layers, we use transposed convolutional layer
for up-sampling. Second, because of the shared latent space
assumption coming from the single encoder E, all of the gen-

erators share the first residual block as a pre-processing step of
the latent code for each of the generators [10].

To transfer the style from one speaker to another, we ex-
change the latent space for both decoders as shown in Fig
2. More specifically, for speaker Si there is a latent code
zi = E(Si) where i is the i-th speaker. To get the same sen-
tence spoken by different speakers, we feed the latent code zi
to the corresponding speaker Generator. Where Gi(zi) will re-
construct the same input S̃i, andGj(zi) will generate Si→j that
has the same content i being said by speaker j (i.e. style transfer
between speakers i and j).

3.2. Training

The encoder and generator are trained in tandem using un-
corresponded sets of speech signals of multiple subjects in an
unsupervised manner. To facilitate the subsequent description,
we will use the following notations:

• i and j are speaker indices where i, j ∈ [1, n] and i 6= j

• Si is a data point for speaker i drawn from distribution
PSi

• Si→j represents the translated speech from speaker i to
speaker j where Si→j = Gj(E(Si))

• q(zi|Si) is probabilistic encoder produces distribution zi
given speaker sample Si

• pGi(Si|zi) is probabilistic generator for speaker i that
produces distribution Si given latent code zi

The overall training loss of the neural style-transfer model for
mel-spectrogram is defined as follows:

L = λ1LVAE + λ2LGAN + λ1LCC + λ3Llatent (1)

The VAE loss (LVAE) is defined as follows

LVAE = λ4

∑
i

DKL(q(zi|Si)||p(z))

−
∑
i

Ezi∼q(zi|Si)[log pGi(Si|zi)] (2)

where the first term is the KL divergence (KLD) of the approx-
imated posterior and the prior of the latent space and the sec-
ond term is calculated through the Monte Carlo method, which
can be understood in terms of the reconstruction of the input
from the posterior distribution and the likelihood. For the KL-
divergence we use prior distribution p(z) as a zero mean Gaus-
sianN (z|0, I) [15].

For each speaker there is GAN subnetwork that use the VAE
subnetwork for the generation step followed byDk as a discrim-
inator where k is the index of a given speaker and k ∈ [1, n].
For example, in speaker 1 we have GAN1 that consists of G1

and D1. Positive samples for GAN1 are sampled from S1,
while negative samples areG1 outputs for input speaker iwhere
i ∈ [2, n]. Then, the GAN Loss (LGAN) aims to penalize the
VAE network for the translated samples between speakers i and
j (i 6= j)

LGAN =
∑
i

ESi∼PSi
[logDi(Si)]

+
∑
i,j

ESj→i∼pGi
(Sj→i|zj)[log(1−Di(Sj→i)] (3)
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Figure 2: The overall procedure of voice conversion with our method for style transfer between two different speakers during evaluation.
The Encoder E generates features embedding for a given input speaker which then based on one of the Generators (G1 or G2) to
produce a mel-spectrogram output for the target speaker. We use WaveNet-based vocoder to generate the speech in the time domain.

The Cycle Consistency (CC) Loss (LCC) helps to enforce
the speaker independent shared-latent space assumption by hav-
ing a cycle-reconstruction stream [9]

LCC = λ4

∑
i,j

DKL(q(zj |Si→j)||p(z))

−
∑
i,j

Ezj∼q(zj |Si→j)[log pGi(Si|zj)] (4)

Similar to VAE loss (LVAE), we use KL divergence and negative
log-likelihood for LCC computation. The KL divergence penal-
izes the network on the latent codes of both the original and
translated samples from the prior distribution. While the neg-
ative likelihood term ensures the reconstruction of the original
Si from the translated one Si→j .

The Latent Loss (Llatent) is the L1-distance between the
codes’ centroids of all speakers i and j

Llatent = |Ci − Cj | (5)

where Ci and Cj are the centroids of speakers i and j distribu-
tions respectively defined as follows:

Ci =
1

|PSi |
∑

Si∈PSi

E(Si). (6)

We implemented our neural speech style transfer model us-
ing PyTorch framework, and train it on a Titan Xp GPU for
approximately 8 hours. We use the Adam optimizer with 1e−4
learning rate with a batch size of 4 samples for each speaker.
The training algorithm is run for 100 epochs. For the regular-
ization parameters in the objective functions, we use λ1 = 100,
λ2 = 10, λ3 = 10, and λ4 = 1e − 3. We choose these val-
ues of the regularization parameters to give more weight to the
reconstruction loss in LVAE compared to other loss terms.
In addition, we also train the WaveNet vocoder [17] separately
using the mel-spectrograms from both generators (G1 and G2)
where the target ground truth is the original waveform for each
sample.

4. Experiments
4.1. Dataset and Feature Extraction

In our work, we use the Flickr8k Audio Caption Corpus [12],
which contains 40, 000 spoken captions generated from 8, 000
photographs from Flickr.com. All utterances have a sampling

rate of 16 kHz and are 1.9 seconds in length. To increase
the diversity in the training/testing sets, we pick two speakers
with opposite genders and have the most number of utterances.
The total number of utterances for both training and testing are
4, 668 (60% male and 40% female). We strictly divide the
dataset to training and testing sets with an approximate ratio
of 70% and 30%, respectively. We use the training set to train
both the VAE-GAN network and the WaveNet vocoder [17],
while the testing set is used to evaluate the model performance.

We compute the log mel-spectrogram with 0.05 seconds
window length and quarter-window overlap; this produces n
windows and 128 frequency bands where n depends on each
utterance length. For each training step, we randomly crop 128
consecutive frames from the log mel-spectrogram of each utter-
ance to generate a 128× 128 input sample.

We train the mel-spectrogram based neural style transfer
model using the procedure in Sec 3.2. We then perform voice
conversion with a style transfer experiment between the two se-
lected speakers as described in Section 3.1.

4.2. Evaluation

To date, there has not been universally agreed objective metrics
for the quality of the synthesized utterance. To this end, we use
three objective methods to evaluate the naturalness of synthe-
sized voices using our model. For fairness, we train each the
evaluation methods on its original dataset it proposed with to
eliminate any possible bias in our results. For testing, we report
the final results on the held out test set using both the original
and synthesized samples. For the synthesized samples, we only
pick the ones with style transfer between two different speakers
(Si→j). In the following, we provide more details about each
evaluation method and the train set for each of them.
ASVspoof 2019 Baseline. The AVSspoof 2019 Challenge
[11] provides a Gaussian Mixture Model (GMM)-based model
as their main classifier with linear frequency cepstral coeffi-
cients [21] (LFCC) features. For training, we use the origi-
nal ASVspoof 2019 dataset to train the GMM model with. We
use the Equal Error Rate (EER) to evaluate the classifier perfor-
mance in the test split. While the ASVspoof baseline does not
measure the quality of the synthesized speech, we use it as a
quantitative evaluation to measure the difficulty of distinguish-
ing between real human voices and synthesized ones.
Content Verification Metric. To ensure that the synthe-
sized speeches contain the same linguistic content as the orig-
inal speech, we use the word error rate (WER) between
the original transcript and the predicted one from the syn-

4728



thesized speeches to measure the intelligibility. We use the
SpeechRecognition [22] open-source library to get the
transcript of each sample.
Speaker Encoding Metric [7]. We use the Speaker
Encoder model from [7] to verify if the speaker identity
is preserved in the synthesized speech. This model uses a
long-short term memory (LSTM) based RNN model
for speaker encoding. The input to the model is the mel-
spectrogram frames translated to a 265-dim vector for each
speech sample. In training this model, a generalized end-to-end
speaker verification loss [23] is minimized, where the samples
with the same speaker preserve high cosine similarity, while the
samples from different speakers are far apart in the embedding
space. We use their pre-trained model without any fine-tuning
and test whether the original and synthesized samples from the
same speaker are in the same cluster. To classify each sample
for one of the two speakers, we use the centroids of original
samples for each of the two speakers using Eq 6, and then get
the probability for each class using the following equation:

p(y = k|x) = exp−d(fθ(x), ck)∑2
i=1 exp−d(fθ(x), ci)

(7)

where k is the class number and k ∈ 1, 2, x is the input sample,
fθx is the speaker encoder model, ck is the centroid of speaker
k, and d is the euclidean distance function. We use EER to
evaluate the model performance.

4.3. Results

Table 1: Equal Error Rate (EER) [%] using ASVSpoof and
Speaker encoding metrics, and Word Error Rate (WER) [%]
using Content Verification metric

Metric Data EER/WER

ASVspoof 2019 [11] Evaluation set in [11] 9.57
Flickr8k [12] test split 38.89

Content Verification Original samples 2.01
Synthesised samples 10.36

Speaker Encoding [7] Flickr8k [12] test split 0.001

Table 1 summarizes the performance of our model with re-
gards to the three evaluation methods in Sec 4.2. To test the
difficulty of distinguishing between real and fake samples, we
use the ASVspoof baseline [11]. From the held-out test set,
we construct a balanced number of real and synthesized sam-
ples. The real samples come from the original speech of each
speaker, where the synthesized samples are the ones with style
transfer between two different speakers. The ASVspoof 2019
baseline method has a 38.89% EER on the Flickr8k test set
while its performance on the original ASVspoof 2019 dataset
is 9.57 EER [11]. This indicates it is more difficult to differ-
entiate between real and synthesized samples from our method
than those from the original ASVspoof baseline dataset.

For the second evaluation method, we use WER to see if
the model preserves the original linguistic content in the syn-
thesized samples. We first compute the WER between the orig-
inal and the predicted transcripts from the speech samples us-
ing the open-source SpeechRecognition Library [22]. As
shown in Table 1, we get 2.01% WER on the original samples.
We use this value as an upper bound for the content verification

S1
S2 1
S2
S1 2

Figure 3: tSNE [24] visualization of the features embedding for
each speaker on the original (S1, S2) and synthesized samples
(S2→1, S1→2) using speaker encoding evaluation method [7].

method’s performance. Computing the WER on the synthesized
samples we achieve relatively close WER to the upper bound
with 10.36% WER. This indicates the intelligence of the model
to preserve the original content in the synthesized samples.

As shown in Fig 3, both the original and synthesized sam-
ples of the same speaker occupy the same cluster while there
is a distinct separation between the two speakers’ clusters. We
compute EER on the predicted probabilities using Eq 7 where
we achieve 0.001%EER (Table 1). These results demonstrate
the efficacy of our proposed model to preserve the speaker’s
identity on the synthesized samples.

5. Conclusion and Future Work

In this work, we present a new voice conversion method based
on a neural style transfer model of the mel-spectrograms. Our
method takes advantage of the recent developments in neural
network models for image style transfer. Experimental results
show that our method can faithfully transfer styles across differ-
ent speakers while preserving the content of the original speech.
In future work, we will further explore the possible modifica-
tion of our proposed model to generalize to broad samples with
noise in the background as well as cross-linguistic speech style
transfer.
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