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Abstract

Voice based devices and virtual assistants are widely integrated

into our daily life, but the growing popularity has also raised

concerns about data privacy in processing and storage. While

improvements in technology and data protection regulations

have been made to provide users a more secure experience, the

concept of privacy continues to be subject to enormous chal-

lenges. We can observe that people intuitively adjust their way

of talking in a human-to-human conversation, an intuition that

devices could benefit from to increase their level of privacy. In

order to enable devices to quantify privacy in an acoustic sce-

nario, this paper focuses on how people perceive privacy with

respect to environmental noise. We measured privacy scores on

a crowdsourcing platform with a paired comparison listening

test and obtained reliable and consistent results. Our measure-

ments show that the experience of privacy varies depending on

the acoustic features of the ambient noise. Furthermore, multi-

ple probabilistic choice models were fitted to the data to obtain

a meaningful ordering of noise scenarios conveying listeners’

preferences. A preference tree model was found to fit best, in-

dicating that subjects change their decision strategy depending

on the scenarios under test.

Index Terms: privacy in speech communication, crowdsourc-

ing, perception of privacy, acoustic environment

1. Introduction

The popularity of voice based devices and virtual assistants has

grown and they have been widely integrated into our daily life.

Individual actions, such as performing tasks and using services,

are fundamentally influenced by those devices, and humans can

benefit emotionally from interacting with chatbots in a similar

way as when interacting with other humans [1, 2]. However,

privacy concerns around smart devices, specifically conversa-

tional agents, have been widely raised [3, 4], whereby the ac-

cess to sensitive speech information needs to be addressed on

multiple levels. Action was taken by the EU with the general

data protection regulations (GDPR) [5], which has also led to an

increased awareness among users regarding personal data and

their distribution. Nevertheless, a recent survey investigating

the awareness on storage behaviour of voice recordings among

users of smart speakers in the US showed that users lack an

understanding of how their personal data can be processed and

stored [6]. This is crucial as users’ perception of risks and bene-

fits influences the willingness to adopt a technology. Therefore,

privacy has been addressed in connection with technology ac-

ceptance models and concepts of trust in smart personal assis-

tants [7, 8].

In human-to-human interaction we can observe that people

intuitively modify their way of talking depending on 1. the con-

tent, 2. the level of trust they have in their conversation partners

and 3. the environment. Communication Privacy Management

Theory (CPM) provides a systematic approach to how humans

make decisions to disclose or protect their private information

by using the concept of privacy boundaries and rules for third

party disclosures when interacting with others [9]. Sannon et

al. [3] extended that theory towards human-agent interactions to

understand humans’ privacy expectations of agents and possible

violations of privacy during interaction. Moreover, in multi-

media communication, especially video conferencing systems,

three major factors for users’ perception of privacy have been

identified: Information Sensitivity, Receiver and Usage [10].

Environmental influence on revealing private information

has so far been mainly addressed in the field of room acous-

tics, where acoustic properties of the environment are adjusted

to limit the propagation of voice [11]. This is especially im-

portant when designing open offices as productivity can be in-

creased whenever people are not able to understand background

speech [12]. Although privacy may not be the major intent in

this context, similar measures, such as articulation index and

speech transmission index, can be used to quantify the level of

privacy. However, those measures do require controlled condi-

tions and specialized equipment [11]. If our devices were able

to easily quantify the level of privacy with respect to surround-

ings, they could adapt their strategy of sharing information be-

tween devices and the communication environment in a similar

way as humans do. Consequently, this could increase the level

of trust between users and technology.

In previous work a conversational speech corpus was pre-

sented to quantify the experience of privacy within different

real-life scenarios [13]. While the focus of the work was the

compilation of the corpus, a first analysis showed that different

environments influence human perception on privacy. Build-

ing on those findings, in the current study we carried out a

crowdsourced listening test to enable in-depth analysis on a suf-

ficiently large sample size and to analyse features that people

use to quantify how much information they are willing to reveal

in the specific surrounding. Our purpose was to investigate the

perception of privacy with respect to ambient noise; the experi-

mental setup and listening test design are described in section 2

and 3, respectively. Section 4 focuses on the consistency of the

obtained results. We analyse them, in section 5 by a preference

choice analysis of different environmental background noises as

well as a comparison of different elimination-by-aspects (EBA)

models showing how different acoustic environmental features

influence peoples’ perception of privacy.

2. Listening Test Material

For our listening test, we used 50 speech files from the TIMIT

database [14] and 3 noise files from the QUT database [15] to

produce the noisy stimuli. As we wanted the participants to fo-

cus on the ambient noise rather than the content, speech files

were chosen to less likely be interpreted contextually during the
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Figure 1: Sound pressure levels (solid lines) over third octave

bands for the equalized noise files and speech files and their

standard deviations (shaded area).

test. For example, sentences expressing facts were chosen over

sentences containing a persons’s name or opinion. Moreover,

samples were balanced in gender of speaker and dialects. The

three noise files, coffee shop, living room and street noise were

chosen to be clearly distinguishable and close to real-life sce-

narios. Each speech file was mixed with an individual noise

sample of each noise scenario. Therefore, 50 files were sam-

pled randomly from the coffee shop and street noise file but

had to be chosen manually for the living room noise. In this

case, acoustic characteristics varied considerably over time so

the manual choice insured that all participants would listen to

the same acoustic features.

Since differences in loudness can influence the participants’

decision, we applied normalization on the individual speech and

noise files before creating the noisy stimuli. As we wanted

the stimuli of the test to be as close as possible to conversa-

tional real-life scenarios we based our normalization on mea-

sured broadband SPL of speech recorded for different noise lev-

els [16]. The average A-weighted sound pressure level was cal-

culated for each of the three noise scenarios. The difference

in sound pressure level was up to 10 dBA so each individual

noise file was equalized and some attenuation was applied. Af-

ter normalization, the average SPL was 55 dBA ± 2 dBA for

the street and 55 dBA ± 2.4 dBA for the coffee and living

room scenarios. Similarly, the speech signals were equalized

but sound pressure level was increased so that the average SPL

was 62 dBA ± 1.6 dBA.

Fig. 1 shows the average root mean square level in third-

octave bands for the three noise environments and the stan-

dard deviation. We will refer to them as “coffee”, “home” and

“street” condition. The noisy mix signal was achieved by sim-

ply adding the pre-processed speech and noise signals. The av-

eraged SNRs for the coffee, home and street noise resulted in

7.9 dB, 5.9 dB and 4.8 dB.

3. Test Design and Procedure

To evaluate the influence of acoustic features on the perception

of privacy, we chose a forced-choice paired comparison listen-

ing test without reference signal, also known as preference test.

By design, participants have to focus on fewer stimuli simulta-

neously compared to multi-stimulus tests and reliability can be

measured more easily [17]. This is especially important when

recruiting from crowdsourcing platforms. Participants were re-

cruited using Prolific [18], a platform producing high-quality

Table 1: Test questions to evaluate the perception of privacy.

Q1: Are you more likely to share a secret, in normal

voice, in the acoustic environment A or B?

Q2: If you share a secret in these acoustic environ-

ments, will you share it with a louder voice in en-

vironment A or B?

Q3: If an eavesdropper is present, is it more likely for

them to hear your normal voice in the acoustic en-

vironment A or B?

data with more diverse participants compared to Amazon Me-

chanical Turk and CrowdFlower (since March 2018 rebranded

as Figure Eight) [19]. The combination of the three different

scenarios and the original speech signal resulted in 6 pairs in

total which were presented to each listener in random order.

Tests were performed using an extension of the browser-based

listening-test framework webMUSHRA with three questions

(see Table 1) displayed on the same page [20]. Those questions,

set up to quantify the perception of privacy were taken from pre-

vious work [13]. Participants could use the button “Play” to lis-

ten to either scenario “A” or “B” and switch seamlessly between

them. Moreover, listeners were allowed to listen as often as they

liked and rate the questions in any order they liked. Neverthe-

less, they were forced to listen at least once to the scenarios and

to rate each question before continuing to the next page. Fol-

lowing the guidelines of [21] we included two Gold Standard

questions where we asked participants to either choose “A” or

“B” for all of the questions on that page. In case of those verifi-

cation questions, the same clean speech signal was presented as

stimuli “A” and “B”. Again following [21], a questionnaire ask-

ing for demographic data was presented at the end of the test.

In total, 100 participants were recruited with a completion time

of 5 to 10 minutes and an average reward of 5 £ per hour. None

of the listeners had participated in one of our tests related to the

same subject before.

4. Consistency Checks

When conducting crowdsourced experiments the experimenter

has less control over the experimental execution than in lab-

based experiments. Therefore we will first investigate the relia-

bility of our participants before carrying out a preference choice

analysis and fitting different probabilistic choice models.

A first attempt to remove unreliable listeners from our test

results is based on the two verification questions that were

added to the listening test and on the completion code each lis-

tener had to submit on the Prolific platform. The correct com-

pletion code was only available after finishing the whole test.

We excluded 24 listeners who failed one or both of the veri-

fication questions or submitted the wrong completion code to

our study. While the majority of the 76 remaining listeners fall

in the age group of 18 to 24, gender bias was almost entirely

avoided (55% male, 45% female).

Reliability of participants can furthermore be assessed by

checking for consistent ratings. The property of transitivity of

preferences states that whenever a participant prefers scenario A

to B and B to C then they furthermore prefer A to C. Otherwise

we call the triad intransitive or a circular triad. Kendall [22]

refers to the property of transitivity in a more general way as

consistency in preferences. In the following, consistency is

checked for each participant individually before transitivity vi-

olations and agreement amongst listeners are examined.
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Figure 2: Preference Score given in percentage with 95% CI for
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Figure 3: Preference Score given in percentage with 95% CI for

each compared pair for test question 2.

Individual consistency checks were performed based on

Kendall’s coefficient of consistence [22]. We computed

Kendall’s ζ for each participant and question resulting in

(0.83, 0.875, 0.89) in average for question 1 to 3. While the

average value suggested individual consistent results, we no-

ticed a large variance in ζ values. Individual inconsistency is

widely accepted as a measure to identify unreliable listeners.

However, not only would the unreliability of the listeners influ-

ence the coefficient but also the stimuli under test [22]. Incon-

sistency can be a sign that the objects are indistinguishable for

the listener, or that the dependent variable may not have linear

property. Therefore comparisons may not reduce to simple rank

ordering. Further analysis showed that the number of partici-

pants with a low coefficient of inconsistence resulted in 28 out

of 76. This suggests that we might have asked the participants

to perform a difficult task rather than that they are not able to ex-

press their preferences. Especially, expressing opinion on how

likely one would be sharing a secret in a specific environment

seemed to be rather difficult to answer for our participants, as

most of the circular triads (N=18) were found for the first ques-

tion. Moreover, circular triads were distributed over participants

and questions so that none of our listeners had a coefficient of

consistence close to zero throughout all questions. Due to these

reasons, we did not exclude results for further analysis and con-

tinue with an overall consistency check.

Global consistency checks are conducted by looking at the

stochastic transitivity and computing Kendall’s coefficient of

agreement. Stochastic transitivity measures take into account

variable behaviour of the decision-maker and therefore consider

that intransitive choices can occur with a certain probability.

The results were summarized in a (4 x 4) preference matrix

in which for each scenario i that had been preferred over the

scenario j the entry tij was increased by 1. Based on this pref-

erence matrix we checked for stochastic transitivity using the
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Figure 4: Preference Score given in percentage with 95% CI for

each compared pair for test question 3.

R package ’eba’ [23, 24]. We computed weak (WST), mod-

erate (MST) and strong (SST) stochastic transitivity. Let Pij

be the empirical probability that scenario i is chosen over sce-

nario j. When Pij ≥ 0.5 and Pjk ≥ 0.5 for three scenar-

ios Si, Sj and Sk, then WST is satisfied if Pik ≥ 0.5, MST

is satisfied if Pik ≥ min{Pij , Pjk} and SST is satisfied if

Pik ≥ max{Pij , Pjk}.

While violations of MST or SST are less severe, systematic

violations of WST may hinder the representation of the paired

comparison results on a global preference scale. The number of

violations was counted for each question in our test. Ratings for

the first question showed 1 violation of MST and 2 violations of

SST whereas question 2 and 3 showed no violations.

Moreover, we computed Kendall’s u-coefficient using the

preference matrix for each question. In case that all partici-

pants agree, the coefficient results in a maximum of 1. With the

number of participants M = 76 we can compute the minimal u-

coefficient as umin = −1/(M − 1) = −0.013. The computed

u-coefficients resulted in (0.024, 0.228, 0.277) for question 1 to

3 respectively. To test if the agreement was caused by chance,

we carried out a χ2 test. It suggested that our u-value differs sig-

nificantly (p < 0.05) from the one obtained when ratings were

caused by chance for all three questions. Due to the relatively

low u-value obtained for the results of the first question, we

can assume that the likeliness of sharing a secret was answered

rather subjectively compared to the results for the second and

third question.

Based on those results we conclude that all our participants

after postscreening were capable of making judgements and that

preferences were not assigned randomly. Moreover, inconsis-

tency of individual judgements can be seen as an expression of

individual preferences possibly influenced by our test design.

5. Results

Our overall hypothesis stated that environmental noise influ-

ences humans’ perception of privacy. Figures 2, 3 and 4 show

the preference scores in percentage for each tested comparison

and question. A χ2 test with Bonferroni correction for multiple

testing showed a significant effect for how likely people are to

share a secret for scenarios “coffee” and “home” (p < 0.05).

Effect size was computed based on Cohen’s w [25] and showed

a medium effect (w > 0.3). When it comes to the questions

about loudness and eavesdropping, comparisons between each

noisy scenario and the original clean speech signal showed a

significant effect (p < 0.01). Again effect size was computed

for the pairs that showed a significant difference resulting in

strong effects (w > 0.5). Paired comparison tests come with

some disadvantages compared to rank order test designs. While
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Figure 5: Schematic Preference Tree Representation. Estimated

ratio scale values are normalized with respect to the home sce-

nario and shown with their 95% CI.

the participant has a relatively simple task of making a prefer-

ence choice, it is on the experimenter to construct a subjective

scale and model decision strategies [26]. One of the widely

used probabilistic choice models in psychoacoustic and QoE

evaluation ( [17],[27]) is the Bradley-Terry-Luce (BTL) model

([28], [29]). It was shown that under certain assumptions the

result of a paired comparison can be established on a ratio-

scale. However, the rather simple relationship between pref-

erence probabilities and scale values of the final model has one

major drawback. BTL requires “context independence” of the

paired comparison judgement which means that listeners judge-

ment is based on the same auditory feature independent of the

stimuli under test. However, if participants rate the pair “cof-

fee - street” based on the auditory feature “background speech

present/not present”, they might need to adapt their decision

strategy for “coffee - home” comparison, as background speech

is present in both of those scenarios. A less restrictive model,

the Elimination-by-aspects (EBA) was first introduced by Tver-

sky [30]. Considering that attributes of a certain stimulus define

the subjects’ preferences, EBA’s use a modified version of BTL

so that the obtained scale values reflect only the influence of

features that are present within one stimulus and absent in the

compared one. Preference Trees [31] were later introduced as

a special case of EBA’s, where features follow a hierarchical

order. Moreover, it turns out that BTL can be seen as a spe-

cial case of EBA if only one unique attribute characterizes each

stimulus [30]. We computed a BTL model as well as a Pretree

model for the results of each question in our test using [24].

The likelihood-ratio test for the three BTL models resulted

in χ2

1(3) = 5.95, p1 = 0.11, χ2

2(3) = 0.19, p2 = 0.98 and

χ2

3(3) = 1.61, p3 = 0.66. Moreover, stimulus equality was

tested based on the comparison with a model where all stim-

uli are perceived equally. The hypothesis that all scenarios are

equal in terms of preference can be clearly rejected (p < 0.05).

Based on [24] we would reject the model if the p-value is less

than 10%. Accordingly, we could accept all the BTL models,

but following the idea that our stimuli might not be context

independent we will fit a Pretree Model to our results. The

best one that was found for the first question ratings is pic-

tured in Fig. 5. The path lengths starting from the root node

are proportional to the scale values, while the lengths of the

branches show the degree of similarity between scenarios con-

nected to the node. This model was fitted to the ratings ob-

tained for each question with Likelihood-ratio test results of

χ2

1(2) = 1.38, p1 = 0.50, χ2

2(2) = 0.19, p2 = 0.91 and

χ2

3(2) = 6.36, p3 = 0.04. While this model seems to fit bet-

ter for the first question, it shows no difference for the second

and performs even worse for the last question. Because of the

fact that our two models are nested, we perform a likelihood

ratio test for comparison [24]. The results show that we can re-

ject the BTL model in favor of the Pretree for the first question

(p < 0.05) but not for the second and the third. That matches

our goal to fit the model to our first question test results without

considering the other preference matrices. In addition, Akaike’s

Table 2: Akaike’s information criterion for the BTL and Pretree

model applied to test results of each question.

Question/Model BTL Pretree

Question 1 40.5 37.9

Question 2 33.1 35.1

Question 3 33.9 40.7
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Figure 6: Ratio scale preference estimated by the BTL model

with errorbars showing 95% CI for test question 2 and 3.

information criterion [32] confirmed this observation with lower

scores stating a better model fit (Table 2).

The preference tree model resulted in a better fit for the

first question, but the BTL model outperformed any other tested

preference model for the second and the third question. We con-

clude that listeners use the same perceptional feature to compare

stimuli when they judge loudness or how likely an eavesdropper

can hear their voice. Instead, this linear ranking does not hold

with respect to the likeliness of sharing a secret. Here, depen-

dent on the pair of stimuli, listeners adapt their decision strategy

accordingly.

Given the preference tree structure, the likeliness of sharing

a secret can be estimated on a ratio-scale. The scale values for

each scenario are given in Fig. 5 together with their 95% con-

fidence intervals. To improve interpretation, we normalize with

respect to the “home” scenario. The BTL model coefficients for

the second and third question are shown in Fig. 6 where utility

scale values for each model sum up to unity.

6. Conclusion

In a crowdsourced paired comparison listening test setup we

measured perception of privacy with respect to three differ-

ent environmental noise scenarios. The crowdsourced test was

found to provide reliable results and that acoustic information

does affect the listeners’ perception of privacy. When asked for

the likeliness to share a secret, participants rated rather subjec-

tively. However, results showed significant differences when

comparing coffee shop and home noise, scenarios that varied

in perceivable background speech. Furthermore, a BTL prob-

abilistic choice model could be successfully fitted to the rat-

ings of the questions addressing loudness and the possibility of

eavesdropping. This indicates that listeners use the same audi-

tory feature to evaluate the different noise scenarios. However,

when asking directly for the likeliness to share a secret in a cer-

tain scenario, the preetree model showed a better fitting. That

indicates that people adapt their decision strategy based on the

scenarios under comparison and their acoustic features. In our

setup, the scenarios could be grouped according to their acous-

tic feature of having background speech present.
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