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Abstract

Speech privacy in modern sensor network environments is nec-
essary for widespread adoption and public trust of collabora-
tive acoustic signal processing. Most current distributed pri-
vacy research deals with ensuring local node observations are
not accessible by neighbouring nodes while still solving shared
tasks. In this work we develop the concept of distributed task
privacy in unbounded public networks, where linear codes are
used to create limits on the number of nodes contributing to
a distributed summation task, such as beamforming. We ac-
complish this by wrapping local observations in a linear code
and intentionally applying symbol errors prior to transmission.
If many nodes join a distributed speech enhancement task, a
proportional number of symbol errors are introduced into the
aggregated code leading to decoding failure if the code’s prede-
fined symbol error limit is exceeded.

Index Terms: Distributed, privacy, audio, linear codes, beam-
forming

1. Introduction

In recent years many distributed algorithms for wireless sen-
sor networks (WSNs) have been developed, primarily stemming
from the advances made in small and energy efficient process-
ing units and battery technology. These systems offer exciting
potential for use in speech enhancement [1,2]. As concepts such
as the Internet of Things (IoT) [3] mature, the wireless sensor
network will become ubiquitous. Nearly any technological de-
vice in the near future will have the capability to be a part of the
IoT, and potentially contribute to enhancement tasks.

Algorithmic developments in WSNs aim to provide dis-
tributed solutions for traditional problems such as acoustic
beamforming [4-6] and image enhancement [7]. Distributed
sensors are exploited to collaboratively solve tasks in a man-
ner optimal for the data present, by sharing local observations
in an unrestricted manner. The rapidly growing field of dis-
tributed optimization [8] provides a framework for problems of
this type and often allows for the computation of distributed
solutions that are equal in performance to their centrally com-
puted alternatives. However, these advances are not without
their challenges [9—13].

Many devices absorbed into the IoT, or designed as part
of large-scale public sensor networks, will have physical sen-
sors, such as microphones or cameras, offering major concerns
for the privacy of device owners, users, and the general pub-
lic. Current research focuses on privacy-preserving algorithms
that prevent nodes other than the observing node from accessing
this private observation. We refer to this as Local Data Privacy
(LDP). LDP may be further classified into computational se-
curity and information-theoretic security. Computationally se-
cure approaches [14—16] attempt to retain privacy by using tech-
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niques such as homomorphic encryption [17, 18], but this is of-
ten computationally expensive, particularly for the low compute
and low energy world of WSNs [19]. Information-theoretically
secure methods use noise to protect local data, and include se-
cret sharing [20], differential privacy approaches [21-23], and
more recent convex optimisation based methods [24].

In this work we introduce Distributed Task Privacy (DTP)
for summations that, in contrast to LDP, aims to ensure the pri-
vacy of entire distributed summation tasks from outside eaves-
droppers. These summations often occur when performing
common enhancement methods such as source separation [25]
and beamforming [5]. We consider dealing with effectively un-
bounded public WSNs where a user may tap the network at any
point to designate a query node. The task to be performed is
shared to form a task subnet, and information is processed in
such a way that distant nodes within the network cannot partic-
ipate in the task without severely degrading task performance.
We accomplish this by wrapping messages in linear codes and
applying forced errors to the local initial codewords. When per-
forming aggregation in the codeword domain, we enable speech
enhancement near to the query node while guaranteeing data
destruction if the task is shared with a subnet larger than the
specified threshold. This allows for a public network with pri-
vacy, where many different users may independently access the
network for processing while maintaining an expected level of
security consistent with the physical signal, e.g., it should not
be possible to eavesdrop across a large building but it may be
possible if you are within the same room. Importantly, the pro-
posed DTP may be used in conjunction with LDP approaches to
ensure both local data and distributed summation task privacy.

The following sections are organised as follows: Section
2 introduces the notation, network setup, and summation tech-
nique used in this paper; Section 3 summarizes linear codes;
Section 4 develops an approach for privacy-preserving data
summation; Section 5 presents simulations confirming the va-
lidity of our approach; and Section 6 concludes this work.

2. Problem formulation

An effectively unbounded public wireless sensor network
(WSN) may be described as an undirected graph G = (V, )
consisting of vertices, or nodes, V connected via edges £. The
node set has cardinality |V| = V. Each node is equipped with
an on-board processor, a two-way communication system, a
power supply, and a microphone. We assume that communica-
tion in our graph is undirected and contains self-loops. Scalars
are denoted with lower case regular font x, vectors are boldface
lower case @, while matrices are upper case boldface P. We
use subscripts to designate that a specific variable is owned by
a node and superscripts to indicate an update index for iterative
algorithms, therefore ¥ describes a vector held by node i at
iteration k. [x]; denotes the ith element of vector x, [P];,; se-
lects out the scalar entry at row ¢ and column j of matrix P.
We denote selection of multiple elements from a vector as [z]e,
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where e is the vector of indices from which to select, resulting
in a vector with dimensionality equal to the number of elements
selected. 7 denotes vector transpose.

Each node i € V holds observation data u;(t) : Z — R
at time sample ¢t. When a user wishes to begin a task, they tap
a node that will henceforth be considered the query node for
that task, denoted by the specific subscript index g. For both
practical and privacy reasons, the query node spreads the task
to a subset V; C V with cardinality |V,| = Vj of nearby nodes.

The problem we consider is that the subset V4, which forms
its own connected subgraph G, = (Vq,&q) with edge set
Eq € &, must collaboratively solve the user-requested task
while also restricting the ability for nodes to join the task that
are not within the task subnet. This smaller task subnet V), al-
lows for more efficient computations to be performed since in-
formation is not required to propagate through the entire public
network. For privacy purposes this reduced information travel
distance means that expected levels of privacy are more easily
retained - nodes that are very distant from a query node should
not have access to tasks seeded at the query node. However, en-
forcing the size of subnet V, is not trivial, particularly if some
nodes become compromised and actively wish to spread tasks
further than intended.

Formally, we consider an aggregation process where infor-
mation that has an expected level of privacy, such as an acoustic
signal that is assumed to decay with distance as it propagates
through air, is combined in a distributed manner as the weighted

sum
E iU,

i€V,

)]

where w; is observed data at each node ¢, the time index ¢ has
been omitted due to the aggregate of each sample being com-
puted independently, and a; is some scalar. Specific examples
of these scalars could be a; = 1 Vi € V,, which corresponds
to a simple summation, or a; = 1/V Vi € Vg, which would
result in a uniform average of observations.

In order to compute the weighted summation (1) in a dis-
tributed manner, each node ¢ may linearly combine data from
neighbouring nodes iteratively to produce new estimates. This
may be framed generally as

=D [P uj

JEN;

ub Tt VieV, 2)

where N; denotes the neighbourhood set of node 7, and Prtt
is a mixing matrix for iteration k£ + 1 constrained to have a spar-
sity pattern according to the topology of the network, such that
P c Swhere S = {P € RY“*V4|{i,j} ¢ &, = [P];; = 0}.
Note that P**! may change for each iteration, and does not
necessarily mix information over all neighbourhoods. A spe-
cific case of the general mixing (2) frequently seen in the litera-
ture, and often useful in practice, are routed protocols [26—-29].
Since iterations may be performed at certain nodes before oth-
ers, routing protocols that remove edges from the query sub-
net to form a tree topology rooted on the query node may be
implemented using (2) by ensuring mixing is performed from
leaf to parent nodes. After the routing summation is complete,
the query node will have access to the sum of all nodes within
the query subnet. In this work, we focus on summations using
routed protocols.

To retain privacy when performing iterations such as (2),
recent methods [22-24] aim to perform neighbourhood mixing
in such a way that nodes do not directly observe data other than
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their own. This maintains the privacy of observed signals be-
tween nodes, since local observations are not explicitly shared
with neighbours, but does not limit the distance that these mix-
tures travel within the larger public WSN V. If, for example,
the mixture uf“ in (2) was an acoustic speech enhancement
estimate, then this information would be allowed to travel un-
bounded within the network, allowing for distant eavesdrop-

ping.

3. Linear codes over prime fields

Linear error correcting codes, or simply linear codes, e.g.,
[30,31], are an important class of forward error correcting codes
used to protect information transmission or storage from sym-
bol errors by using redundancy. They are defined over a finite
vector space F;!, where F, is a finite field of order r. In this
work we limit ourselves to prime fields, where 7 = p. The
following definition holds:

Definition 1. (Linear code). A linear code C is a code in Fy
for which, whenever x,y € C, then ax + by € C, for all
a,b € Fyp, ie, Cis alinear subspace of ;.

A linear code C' defines an encoder map Efn : IF;, — Fy

from an [-dimensional message m € IF;, to an n-dimensional
codeword ¢ € F;;. This encoder map is usually computed using
the generator matrix G € ]FQ,X", where encoding is performed
as

c=Gm. 3)
The corresponding decoder map D” , : Fy — Fé, recovers
the original message m from the codeword e. Linear codes
are typically denoted as [n,l, d] codes, where n is the length
of the codeword, [ is the length of the message to be encoded,
and d refers to the minimum Hamming distance between any
two codewords. Every linear code satisfies the Singleton bound
l+d<n+1,where 1 <[ < n. Given the Hamming distance
d, a linear code may correctly decode a corrupted codeword ¢
provided that fewer than d/2 symbol errors occur.

We assume the observation u; € R at each node i € V
has entries bounded in the range —y < u; =< y. Given that the
observed data may be continuous (or stored using quantization
at a far finer level than our transmission rate would allow, so
as to appear effectively continuous), a quantization step may be
required prior to coding. The observations are quantized using a
uniform p-level quantizer Q;,,, resulting in p equally spaced val-
ues over the range —y to y. We refer to the quantized observa-
tions as messages m; = Q; ,(u;) € F, Vi € V, and their de-
coded approximations as @; = Ry ,(Q.p(ui)) € R' Vi € V.
In the remainder of this work we refer to @@ as the quantizer
and R as the dequantizer (rather than as the decoder, to avoid
confusion with the linear code decoder D7, ).

4. Distributed private summation

In this section, we exploit linear codes in a novel way to guar-
antee distributed privacy when performing processing over a
WSN, where a processing task is defined over the subnet V,
of nodes originating from a query node gq. We firstly present the
algorithm, and then provide an analysis on the mutual informa-
tion decay that occurs when decoding failure occurs.

4.1. Distributed private summation algorithm

As aresult of Definition 1, for any linear code the sum or differ-
ence of any two codewords is also a codeword. Since messages



are encoded by a matrix multiplication with the generator G,
the codeword associated with the sum of two messages 1 and
‘my is the same as the sum of the two separate encodings

B}, (m1 +m2) = G(mi +ma)

)
= Gm1 + Gmg = Elljn(m1) + Eﬁ7l(m2),

where addition and matrix multiplication are performed using
finite field arithmetic over the field I, i.e., modulo p.

From (4), summations over the network may be performed
on codewords, rather than messages, with forced errors present.
If anode wishes to output an estimate of the private aggregation
procedure, only then will it decode the forcibly corrupted code-
word mixture. By controlling the number of errors introduced
and the Hamming distance of the linear code used, we effec-
tively bound the overall number of nodes able to participate in
a distributed task.

Algorithm 1 describes the Distributed Private Summation
(DPS) procedure. For this scenario, we require a message quan-
tizer/dequantizer to map between R’ and IF‘;, and a linear en-
coder/decoder to map between IF;) and [F;,. The parameter [ is
the dimensionality of the observation. A predefined code length
n and a predefined number of symbol errors A are also neces-
sary. Given these requirements, each node determines A code-
word symbol indices that will be corrupted by error.

Nodes observe signals u; Vi € V), and a summation task is
defined over a task subnet V, C V. A set of edges 7;0 is de-
termined that converts the general task graph into a tree graph
rooted at the query node q. Messages m,; Vi € ) are formed
by mapping observations to the finite field F', where message
values must satisfy [Vglmax(|[molleo, - .- [[my,|lle) < p
to guarantee summation overflow does not occur. Initial code-
words ¢ are computed by encoding messages m.;, Vi € V,
and A symbol errors are applied to each codeword randomly
and independently. We then begin iteratively summing through
the tree, from leaf nodes to the root. At each iteration k we
use the tree edges ’Ek to define a leaf node set ﬁf, a set of leaf
parent nodes P, and a set of all edges connected to leaf nodes
denoted }'5. Each leaf parent stores the sum of its own code-
word and the codewords of all its leaf neighbours (defined as
the union of the leaf parent’s neighbours and the current leaf
nodes) as cf“. The tree edge set is then updated by removing
the current leaf edge set ]-'5 from the current tree edge set. The
final output at the query node q is the decoded and dequantized
codeword after summation termination.

4.2. Mutual information decay

Let I (m, ™) denote the mutual information between true mes-
sage m and decoded message rn, H (m) as the entropy of mes-
sage m, E[-] as the expected value operator, and S[-] as the
Heaviside step function defined to be zero when its argument is
non-positive, and one when it is positive. The following propo-
sition holds, where the proof is omitted to conserve space:

Proposition 1. Given a network of Vy nodes using a MDS lin-
ear code with codeword length n, message length l, and prime
field order p, each node introduces X\ independent codeword er-
rors, then the mutual information between true aggregated mes-
sage m and the decoded message aggregate m is given by

I(m,m) = H(m)(S[ - E[A] 4+ (n — 1+ 1)/2]

E[A]

+ S[E[A] = (n—1+1)/2](1 — ), )
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Algorithm 1 Distributed Private Summation

Require: Task subnet Gg; prime field characteristic p; mes-
sage quantizer (Q; ,; message dequantizer R; ,; linear en-
coder El’j > linear decoder Dﬁ,ﬁ code length n; number of

errors A

Symbol error index vectors e; = a ~ U(n,\) Vi € V
Nodes observe u; € R' Vi € V
Summation defined over task subnet (V,, &) C (V,€)
Construct tree edge set 7;0 C &, rooted at query node g
m; = Qup(wi), [Vglmax(||molleo, . .., [[manllec) < p
Encode ¢} = B}, (m;) € Fp Vie ),
Apply errors [¢)]e, = b ~ U(p, \) Vi € V,
k=0
while 7.* # () do
Define leaf nodes £’,§, leaf parents Pk and leaf edges
Fy = {0, 5)lj € Ni Vi € Ly} using Tf
[P, ; = 1fori == j,
[ijLl]i,j =1lforj e M n LZ
[P**1]; ; = 0 otherwise.
k1 k\ Tk
T < T8\ Fy

T = Yo [PE el vie

Vi € PF

q-

k+k+1
end while
uy"™ = Ry p(DE (cy))
where
E[A] = (1 — Dn(l— (1 - 1)) ©
p n '

5. Simulation experiments

In this section we investigate Algorithm 1 when applied in two
simulated scenarios using Reed-Solomon (RS) codes [32] - ran-
dom number summation and distributed speech enhancement.
The network consists of a varying number of nodes uniformly
randomly scattered in a 2D circular surface with radius 25 m.
The nodes have a communication range of 10 m. The binary
adjacency matrix for the network graph is then constructed,
where connected node pairs are represented with edges of value
1 while unconnected pairs have edge value 0.

5.1. Toy data

In this scenario, nodes are each assigned a random integer mes-
sage m; € IF; Vi € Vg4, where each dimension is drawn from
the discrete uniform distribution /{0, p/V;,}. We use a prime
field with characteristic p = 251 so that our messages may
be stored within 8 bits. A random node is then selected as
the query node g. Firstly, we use a fixed codeword length of
n = 64 while varying the message dimensionality, and corre-
spondingly the codeword Hamming distance. Three message
lengths of | = 16, 32, and 48 are implemented in order to com-
pare the point at which decoding breaks down. This gives a
redundancy of 300%, 100%, and 33.3%, respectively. Nodes
each introduce A = 1 symbol errors to their own message.
We then double the redundancy for each message length, and
also introduce A = 2 symbol errors to maintain roughly the
same codeword failure point, while increasing the decay rate
past this point. Since the generator matrix GG for the RS code
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Figure 1: MSE and Mutual Information versus number of task
nodes, for varying levels of codeword redundancy.

used is in standard form, it is possible to attempt decoding past
the point at which the RS code breaks down by simply reading
the first [ codeword dimensions. This is used to compute the
mean squared error (MSE) and mutual information (MI) after
decoding fails.

The left column of Figure 1 shows performance when nodes
each introduce a single error, while the right column shows per-
formance when two are added. With a single error, for all code
lengths we see decoding error appearing past the expected point
of 8, 16, and 24 nodes, respectively, since at this point there are
approximately d/2 symbol errors in the final summation total
when a single error is present (recall d is the Hamming distance
of our linear code). We see a constant MI until the point of
decoding failure, at which point we see exponential decay. By
doubling the redundancy while also doubling errors per node
we maintain roughly the same point of decoding failure, but we
now accelerate the information decay rate past this point. This
simulated data very closely matches the theoretical performance
predicted in (5).

5.2. Private speech beamforming

In this private beamforming setup nodes observe acoustic sig-
nals originating from a talker located at the centre of the sim-
ulated environment surface. A second interfering talker along
with independent additive white Gaussian noise at each node
is also present. The observed signals at each node, sampled
synchronously at 8 kHz, are calculated using the acoustic trans-
fer function vector d computed by assuming a free field model
for both talkers. Beamforming is accomplished using an esti-
mated covariance matrix over all nodes R to compute the op-
timal weight vector w* = (R~ 'd)/(d" R™'d). The task-
specific weighting vector w™ may be computed either centrally
or in a distributed manner [8, 33, 34], and we assume that no
private data leakage occurs here. For the delay-and-sum (DSB)
scenario, the covariance matrix R was assumed to be diagonal,
while the MVDR beamformer [35] exploited the full matrix.
We process local signals by taking 50% overlapping time-
domain blocks and applying a Hann window prior to taking the
short-time Fourier transform. This gives us frequency-domain
signals denoted @; € C' at all nodes i € V, within the query
subnet. We denote the stacked collection of these distributed
signals as the matrix X, € CV2*!. The complex weight vector
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Figure 2: SNR versus number of task nodes for conventional and
private beamformers, with codeword redundancy of 13.8%.

w* e CVal may then be used to form signal aggregation across
the network as

§ = w*TXq = Z [w*]iz; = Z a;u;,

i€Vq =Y

@)

where u; = real([w*];z;) € R is a task weighing at node
¢ applied to the signal at this node to produce observation data
w;, and § is the enhanced signal sample. These observations are
then quantized to give messages m; € FL Vi € V,. We use a
prime field with characteristic p = 16381 so that our messages
may be stored within 14 bits. A block size of [ = 224 is used
which allows for a reasonable acoustic window length of 28
ms. With A = 1 error introduced we have a codeword length
n = 255. When doubling the introduced errors we also double
the redundancy, giving a codeword length of n = 286.

Figure 2 plots the signal-to-noise ratio (SNR) as a function
of contributing task nodes. Initially, as more nodes are included
in the beamforming task we see an increase in performance of
the enhanced signal. This boost in SNR drops after the cho-
sen decoding failure point. In contrast, we see that with no
errors applied the DSB and MVDR performance continues to
rise as more nodes are included, compromising privacy. We
note that the point at which information destruction occurs is
entirely controlled by the system designer. This may be set to
impose dropoff faster than natural acoustic signal decay, guar-
anteeing privacy. Importantly, the communication overhead re-
quired for our private protocol is minimal (13.8% and 27.7%,
respectively) when compared to the block length of the original
signal.

6. Conclusion

We conclude that public WSN privacy can be ensured by limit-
ing information propagation throughout an unbounded network,
where speech tasks are seeded by user-accessed query nodes.
We have applied errors to locally encoded data observations, al-
lowing for distributed aggregation that is performed in a manner
that guarantees information destruction when too many nodes
contribute to the task. This allows a system designer to enforce
a level of acoustic privacy consistent with natural signal expec-
tations. Our approach is efficient, flexible, and scalable, and
may be used in combination with other existing protocols that
encourage local node privacy.
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