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Abstract 
It has been noted that the identification of the time-frequency 
bins dominated by the contribution from the direct propagation 
of the target speaker can significantly improve the robustness 
of the direction-of-arrival estimation. However, the correct 
extraction of the direct-path sound is challenging especially in 
adverse environments. In this paper, a U-net based direct-path 
dominance test method is proposed. Exploiting the efficient 
segmentation capability of the U-net architecture, the direct-
path information can be effectively retrieved from a dedicated 
multi-task neural network. Moreover, the training and inference 
of the neural network only need the input of a single 
microphone, circumventing the problem of array-structure 
dependence faced by common end-to-end deep learning based 
methods. Simulations demonstrate that significantly higher 
estimation accuracy can be achieved in high reverberant and 
low signal-to-noise ratio environments. 
Index Terms: speech source localization, direction-of-arrival 
estimation, U-net, time-frequency masking, multi-task learning 

1. Introduction 
The extraction of the direction-of-arrival (DOA) of the target 
speaker plays an important role in many acoustic signal 
processing applications, such as speech enhancement, robot 
audition and video conferencing. The commonly utilized 
algorithms, including the time difference of arrival (TDOA) [1], 
the steered response power (SRP) [2] and the subspace methods 
[3], suffer from considerable degradation of estimation 
accuracy in adverse environments with high reverberation and 
strong noise. It has been noted that the identification of the time-
frequency (TF) bins dominated by the contribution from the 
direct propagation of the target speaker can significantly 
improve the robustness of the DOA estimation [4]. Several 
methods have been proposed to retrieve the direct-path 
information, including the coherence test [5], the direct-to-
reverberation ratio (DRR) [6] based test, the direct-path 
dominated (DPD) test [4], [7] and its various variants [8], [9], 
among which the DPD-test-based methods are regarded as the 
state-of-the-art (SOTA) solution [9]. However, these methods 
are usually designed to alleviate the influence of reverberation 
and mild diffuse noise [8], and the effective retrieval of the 
direct-path information in more adverse environments is still a 
challenging task. 

The data-driven deep learning technique, in the form and 
neural network with many layers, has achieved huge success in 
image related applications [10], and has also attracted interest 

in the field of audio processing [11]. The normal multi-layer 
perceptron model (MLP) [12], the convolutional neural 
network (CNN) [13], the residual network (ResNet) [14], and 
the convolutional recurrent neural network (CRNN) [15] have 
been utilized in DOA estimation, usually in an end-to-end form 
with the desired DOA acting directly as the training target. 
Despite its potential benefit of improved performance in 
adverse environments, this end-to-end implementation faces 
the challenge of generalization, i.e., the DOA estimate might be 
severely deviated in unseen noise scenarios. Moreover, the 
optimized network only serves a specific array with fixed 
microphone number and distribution, and it is difficult to adapt 
to different array structures.  

In this paper, the strong segmentation ability of deep 
learning is utilized to extract the direct-path TF bins of the 
target speaker, based on which the DOA can be estimated using 
the common rule-based algorithms. Obviously, the processing 
of speech in TF domain is analogous to image processing. 
Motivated by the successful implementation of U-net in 
biomedical image segmentation [16], a multi-task U-net 
architecture is designed to estimate the ideal ratio masks (IRMs) 
of both the entire speech (including the reverberation) and the 
direct-path speech component simultaneously. The estimated 
IRMs are further utilized to refine the direct-path TF bins of the 
desired target speaker. The training and inference of the 
proposed architecture depend on the input signal of only one 
microphone, making it suitable to be implemented in any array 
configuration. The DOA is finally estimated by the common 
algorithms like the SRP-PHAT [2] on the extracted direct-path 
bins, which can alleviate the generalization problem faced by 
the end-to-end deep learning approach in untrained conditions.  

2. Algorithm description 

2.1. Signal model 

In frequency domain, the signal captured by the microphone 
array can be written in vector form as 

， (1) 

where x(t,f) is the captured signal vector at time index t and 
frequency index f, s(t,f) is the target speaker signal, g(f) is the 
direct-path transfer function vector between the desired speaker 
and the array, r(t,f) is the reverberant speech, and n(t,f) is the 
noise signal vector uncorrelated to the desired speech. Note that 
the direct-path component g(f)s(t,f) includes the most precise 
information of the target speaker DOA, and extraction of the 
direct-path TF bin can significantly improve the robustness of 

( , ) ( ) ( , ) ( , ) ( , )t f f s t f t f t f= + +x g r n

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-24935086



DOA estimation [8]. Furthermore, to guarantee a reliable 
estimation and alleviate the influence of reverberation and noise, 
it is better to extract the direct-path TF bin satisfying 

 .  

2.2. The multi-task U-net 

The U-net architecture [16] consists of a contracting encoder to 
analyze the whole image and a successive expanding decoder 
to produce a full-resolution segmentation, together with the skip 
connections between opposing convolution and deconvolution 
layers to combine low level detailed information and high level 
semantic information. It has been widely accepted as the SOTA 
solution on biomedical image segmentation [17]. The 
extraction of the direct-path desired speech in STFT domain 
amongst reverberation and interference can be regarded as a 
segmentation problem. Besides, the extraction of entire speech 
and direct-path speech signal utilize similar feature information 
from spectrogram, and can be seen as related tasks. Therefore, 
it is reasonable to establish a network structure based on U-net. 

As noted in the field of speech enhancement [18], it is 
difficult to alleviate the influence of both reverberation and 
interference. Thus extracting the direct-path speech using U-net 
in a straightforward manner is not a proper choice. Actually, 
our numerous tests have demonstrated that the noise dominated 
bins are often mis-classified as the direct-path bins of speech. 
To make a more robust direct-path speech extraction, a multi-
task network is proposed in this paper, which extends the 
original U-net architecture by adding another decoder, as shown 
in Fig. 1. The network aims at estimating the IRM of both the 
desired speech including reverberation (IRMs) and the direct-
path speech (IRMd) simultaneously, and these can be utilized 
by a robust direct-path speech extraction scheme as described 
in Sec. 2.3.  

Our proposed multi-task U-net is show in Fig. 1. Each blue 
box corresponds to a multi-channel feature map, and the 
number of channels is denoted on the top. The x-y-size is 
provided at the lower-left edge of the box. White boxes 
represent copied feature maps, concatenated with a nearby blue 
box which is the output of a de-convolution operation. The 
purple arrows denote a 2D convolution layer with a filter size 
of 3×3, each followed by batch normalization (BN) and 
exponential linear unit (ELU). The number of filters for 
convolution operation is the same as the channel number of the 
following blue box. The grey arrows denote copy operation. 
The red arrows denote 2×2 max-pooling operation with stride 2 
for down-sampling. The green arrows denote the 2×2 de-
convolution operation that halves the number of feature 
channels, followed by “ELU” nonlinearity. Finally the feature 
maps with the initial resolution are processed by a 1×1 
convolution operation, followed by “Sigmoid” nonlinearity, 
represented as cyan arrows in Fig. 1. 

 
Figure 1: Modified multi-task U-net architecture. 

Drop-out layers with rate 0.5 before each of de-convolution 
operation perform further implicit data augmentation and avoid 
overfitting. The input size is L × K, with L and K the numbers 
of time frames and frequency channels, respectively. All 
convolutions are padded so that the shapes of the outputs, 
denoted as IRMs

	* and IRMd
	*, are the same as the input. 

It has been noted that the skip connections between the 
encoder and the decoder guarantee the propagation of the 
gradient flow and allow low-level information to flow directly 
from the high-resolution input to the high-resolution output [16]. 
In the output block of the multi-task U-net architecture, some 
additional convolution layers are used for the second task, i.e., 
the IRMd

	* prediction, as shown in the lower right part of Fig. 1. 
The additional connections between the two prediction tasks 
transfer the feature information related to IRMs

	* to the feature 
information related to IRMd

	* , aiming at improving the 
estimation accuracy of the latter. The input to the network is the 
logarithmic magnitude spectrogram of a single-channel noisy 
signal.  

In the training stage, the desired values of IRMs and IRMd, 
namely IRMs

	t and IRMd
	t, are calculated as follows. The IRMs

	t is 
defined as  

,  (2) 

in which Pd(t,f), Pr(t,f) and Pn(t,f) denote the power of the 
direct-path speech, reverberant speech and noise, respectively. 
ξn is a small regularization parameter for maintaining the 
stability of the algorithm at bins with ultra-low signal power. 
Similarly, the IRMd

	t is defined as  

.  (3) 

The cost function of the network is the summed mean 
squared error (MSE) loss between the estimated and desired 
IRM values, described as 

. (4) 

2.3. Robust extraction of direct-path speech 

As mentioned in Sec. 2.2, it is not a proper choice to extract the 
direct-path speech by only using IRMd

	* . A small IRMs
	*  also 

indicates that the TF bin is highly likely dominated by the noise 
signals. Therefore, an effective refinement of the direct-path 
dominance test criterion is proposed by exploiting both IRMs

	* 
and IRMd

	* as the following  

,  (5) 

where IRMDPD denotes the refined IRMd
	* , and IRM0 is a 

threshold value. It is expected that this refinement can further 
eliminate the influence of noise, ensuring a more robust DOA 
estimate. The set of TF bins passing the direct-path speech 
domination test is defined as 

,  (6) 

where TH is a threshold value.  
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Figure 2: Overview of the system. 

2.4. Overview of the whole system 

The overview of the proposed DOA system is illustrated in Fig. 
2. Following short-time Fourier transform (STFT), the multi-
task U-net architecture is utilized to estimate both IRMs

	* and 
IRMd

	* at the same time. In the training stage, the target values 
including IRMs

	t  and IRMd
	t  are calculated from the single-

channel signals. In the stage of DOA estimation, the estimated 
mask outputs are further utilized to refine the direct-path TF 
bins of the speech. Finally, the target speaker DOA is estimated 
by the commonly used DOA algorithms, such as the SRP-
PHAT [2] or the MUSIC [3], on the extracted direct-path bins.  

The power steering function for the SRP-PHAT is 
calculated for all bins in Π as 

, (7) 

where Θ represents the incident angle, and the superscript “H” 
denotes the conjugate transpose operation of the complex 
matrix. The MUSIC spectrum is calculated as 

, (8) 

where the matrix Un(f) represents the noise subspace assuming 
a single source, and its columns includes the eigenvectors of the 
spatial spectrum matrix  

 (9) 

corresponding to the M−1 smallest eigenvalues of a M-element 
array. Note that the expectation in Eq. (9) is estimated by 
sample average within the set Π. The angle of the dominant 
peak is identified as the DOA of the desired speaker.  

3. Simulations 
In this section, the proposed methods are evaluated using a 4-
element uniform linear array (ULA) with the inter-microphone 
distance of 3.5 cm and a 4-element uniform circular array (UCA) 
with the radius of 3.5 cm. The arrays are positioned in 2 
different rooms with parameters shown in Table 1. The room 
impulse responses (RIRs) are simulated using the image 
method [19] with room dimensions, array center, and source-
array distance, perturbed by 10%. Both directional noise and 
diffuse noise are considered, and the acoustic noise field 
generator [20] is utilized to generate the diffuse noise.  

Table 1: Configuration for different rooms. 

Room 1 2 
T60 (s) 0.32 0.65 
Source-array distance (m) 3 2 
Room size (m3) 7.32×5.5×3 5.9×4.2×3.3 
Array center (m) 3, 2.1, 1.2 2.5, 1.8, 1.5 

Table 2: Configuration for training data generation. 

Items Parameter 
Room size (m3) [6, 8]×[4, 6]×[2.8, 3.6] 
Source-array distance (m) [1.5, 2.5] 
T60 (s) [0.16, 2.1] 
SNR (dB) [−5, 20] 
DOA (º) [−90, 90] 
 
The TIMIT [21] database is used as the speech source and 

18 noises from the Diverse Environments Multichannel 
Acoustic Noise Database (DEMAND) [22] are used as the noise 
source, with a sampling rate of 16 kHz, an FFT size of 512 
samples, and STFT analysis using a Hanning window with 75% 
overlap. An analysis frequency range of [1000, 8000] Hz is 
employed, which leads to a total of 57,600 TF bins for each 
2.072 s segment of recordings. ξn and IRM0 in Eqs. (2), (3) and 
(5) are set as 1e−4 and 0.5, respectively. The threshold TH in Eq. 
(6) for each utterance is chosen such that 1000 bins pass the test. 
The DOA range is −90º to 90º with a 1º resolution.  

The multi-task U-net is trained using a single-channel 
database, with 5300 utterances from TIMIT and 14 different 
noises from DEMAND randomly chosen to construct the 
training set. The rest 1000 utterances and 4 noises are randomly 
divided into the validation set and test set. The configuration of 
data generation is given in Table 2, and all the parameters are 
randomly distributed within the labeled upper and lower limits. 
RIRs from a point source in a room to a microphone are 
simulated using the image method. We choose the clean 
utterances from training set, convolve them with the generated 
RIRs, and then add noise with different SNRs. Overall 70 hours 
noisy speeches are generated as the training data. 

The input log-magnitude spectrograms (256×256 points) to 
the network are all normalized to [−1, 1]. The mini-batch size 
of training is 32. The learning rate is set to 1e−4 initially, and it 
will be halved if the loss function of validation set does not 
decline in 5 consecutive epochs. When the loss function of the 
validation set does not decline in 30 consecutive epochs, the 
training will be ended. Our network is trained using the ADAM 
optimizer with 4 NVidia GTX 1080 Ti GPUs.  

3.1. Benefit of multi-task learning 

A typical test example is presented here to show the benefit of 
multi-task learning in adverse environment. The test data is 
generated for the ULA in Room 1 and, with the speaker and the 
directional noise source placed at 30º and −30º respectively. 
The SNR is 0 dB. 

As shown in the 1.5-1.6 s period of Fig. 3(b), a significant 
amount of noise bins have passed the DPD test if only 𝐼𝑅𝑀"

∗  is 
utilized, resulting in an erroneous DOA estimate at the noise 
direction, as shown in Fig. 3(e). In Fig. 3(d), it can be seen that 
most of the noise bins are filtered by the refined DPD test 
proposed in Sec. 2.3, thus an accurate estimation of the DOA of 
the desired speaker can be achieved, as shown in Fig. 3(f).  
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Figure 3: (a) Spectrogram of noisy speech with SNR of 

0 dB. (b) TF map of 𝐼𝑅𝑀"
∗ . (c) TF map of 𝐼𝑅𝑀$

∗. (d) 
TF map of IRMDPD. (e) Normalized spatial spectrum 
calculated on 𝐼𝑅𝑀"

∗ . (f) Normalized spatial spectrum 
calculated on IRMDPD. The black and magenta dotted 
lines in (e) and (f) are the DOAs of noise and speech, 

respectively.  

 
Figure 4: Segment level accuracy of different DOA 

estimation methods in different conditions.  

Table 3: Configuration for different test conditions. 

Condition Array Room Direction-of-arrival 
Speaker Noise 

Ⅰ ULA 1 30º −30º 
Ⅱ ULA 1 60º −30º 
Ⅲ ULA 2 30º −30º 
Ⅳ ULA 2 30º Diffuse 
Ⅴ UCA 2 30º −30º 
Ⅵ UCA 2 30º Diffuse 

3.2. DOA estimation in reverberant noisy conditions 

The performance of the DOA estimation methods is evaluated 
in terms of segment level accuracy. We consider that the 
estimate is correct if the difference between the prediction and 

the true DOA is less than or equal to 5º. Overall, there are 12000 
test samples divided into 6 conditions, shown in Table 3. In 
each condition, there are 2000 noisy utterances with 4 different 
SNRs, i.e., 0 dB, 5 dB, 10 dB and 20 dB. 

Overall 7 different DOA estimation methods are compared, 
including (ⅰ) SRP-PHAT: the conventional SRP-PHAT [2]; (ⅱ) 
MUSIC: the conventional MUSIC [3]; (ⅲ) DPD-MUSIC: 
DPD-MUSIC for arbitrary arrays [7]; (ⅳ) CNN-DOA: the CNN 
based DOA estimation method proposed in [13]; (ⅴ) PHASEN 
PHAT: SRP-PHAT weighted by the amplitude mask estimated 
using PHASEN [25]; (ⅵ) U-net MUSIC: MUSIC for all bins in 
Π; and (ⅶ) U-net PHAT: SRP-PHAT for all bins in Π. It should 
be noted that PHASEN is not proposed for the DOA estimation 
task but a SOTA deep learning solution of speech enhancement 
in STFT domain. 

Figure 4 presents the segment level accuracy for different 
methods. From the results, it can be verified that the traditional 
signal processing based methods, like the SRP-PHAT and the 
MUSIC, suffer from performance degradation in presence of 
noise and reverberation [26]. The method of the PHASEN 
PHAT performs better than traditional methods, but it is still 
not satisfactory enough. This can be attributed to the fact that 
the PHASEN is optimized for speech enhancement, not for 
DOA estimation task. Though the DPD-MUSIC performs 
better considerably, its performance degrades when SNR 
becomes lower or the true DOA is closer to the endfire direction 
of ULA. The performance of the CNN-DOA is close to our 
proposed method under diffuse noise condition, but seriously 
degrades at lower SNR with directional noise, which matches 
well with the results presented in [13]. The U-net PHAT 
outperforms the U-net MUSIC, because the number of bins 
passing the DPD test is limited, restricting the performance of 
MUSIC. 

Overall, compared to the other methods, the proposed U-
net PHAT method achieves the highest localization accuracy in 
all the testing scenarios. Its benefit at low input SNRs with 
directional noise is more remarkable. It also should be noted 
that the proposed U-net PHAT method can effectively increase 
estimation accuracy when the expected DOA is close to the 
endfire direction of the ULA. In addition, the network is trained 
using a single-channel database, which makes the proposed 
method easy to be implemented in different arrays. This has 
been validated by the efficacy of the proposed method on both 
the ULA and UCA. 

4. Conclusion 
In this paper, we propose a robust DOA estimation method with 
U-net based extraction of the direct-path TF bins of the target 
speaker. A multi-task U-net structure is proposed to effectively 
predict the IRM of both the reverberant speech and the direct 
speech signal at each TF bin. The training of the network only 
depends on the input of a single microphone, which makes the 
proposed method suitable for any array structure. The estimated 
IRMs are further utilized to refine the direct-path TF bins of the 
desired target speaker, based on which the DOA is finally 
estimated by using the common algorithms like the SRP-PHAT. 
Simulation results validate the benefit of the proposed method 
especially at low input SNR with directional noise. 
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