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Abstract
A common approach to overcoming the effect of reverberation
in speaker localization is to identify the time-frequency (TF)
bins in which the direct path is dominant, and then to use only
these bins for estimation. Various direct-path dominance (DPD)
tests have been proposed for identifying the direct-path bins.
However, for a two-microphone binaural array, tests that do not
employ averaging over TF bins seem to fail. In this paper, this
anomaly is studied by comparing two DPD tests, in which only
one has been designed to employ averaging over TF bins. An
analysis of these tests shows that, in the binaural case, a TF bin
that is dominated by multiple reflections may be similar to a
bin with a single source. This insight can explain the high false
alarm rate encountered with tests that do not employ averaging.
Also, it is shown that incorporating averaging over TF bins can
reduce the false alarm rate. A simulation study is presented that
verifies the importance of TF averaging for a reliable selection
of direct-path bins in the binaural case.

1. Introduction
Binaural speaker localization or direction-of-arrival (DOA) es-
timation is an important component in speech enhancement in
various head-mounted communication devices, e.g. hearing
aids and robot audition. These devices often operate in rever-
berant environments such as offices and living rooms. Under re-
verberant conditions, DOA estimation becomes a challenge due
to reflections from room boundaries that mask the true DOA.

Traditional methods for binaural localization use the in-
teraural level difference (ILD) and interaural time (or phase)
difference (ITD or IPD) for estimating source direction, e.g.
[1, 2, 3]. However, these features are not robust to reverber-
ation. Several methods have been proposed to overcome the
effect of reverberation. The learning-based method in [4] gains
robustness to reverberation by using speech signals that are cor-
rupted by diffuse noise to train a deep neural network classi-
fier. However, this method requires training and returns DOA
estimates even for time segments that do not contain informa-
tion about the speaker’s direction. Another recently proposed
method overcomes reverberation issues by using the direct-path
component of the relative transfer function (RTF) [5, 6, 7] for
estimating source direction. However, this method requires a
speech-free segment for estimating noise statistics. Therefore,
its performance strongly depends on the accuracy of the noise
and the RTF estimates.

One effective approach to overcome the effects of reverber-
ation, that does not require training or transfer function esti-
mation, is based on the direct-path dominance (DPD) test [8].
With this approach, DOA estimation is performed in the time-

frequency (TF) domain by selecting TF bins in which the direct-
path signal is dominant, and then only these bins are used for
estimating the speaker’s DOA. Various DPD tests have been
proposed for identifying direct-path bins [8, 9, 10, 11, 12, 13,
14, 15], one of which was tested for a two-microphone binaural
array [11, 16]. These tests can be classified into two classes,
where one class employs averaging over TF bins, while the
other does not incorporate averaging, i.e. tests in which a deci-
sion on an individual TF bin is based on the bin itself. Although
all tests have demonstrated improvement in the robustness to re-
verberation, tests that do not incorporate averaging over TF bins
seem to fail when applied to binaural arrays.

In this paper, two tests, one from each class, are investigated
under the binaural setup. An analysis of these tests is presented,
showing that in the binaural case, a TF bin that is dominated
by multiple reflections may be similar to a bin with a single
dominant source. This insight can explain the high false alarm
rate with tests that do not employ averaging, and which select
TF bins based on their similarity to a single source. Also, it is
shown that incorporating averaging over TF bins can reduce the
false alarm rate. A simulation study is presented that compares
the performance of the studied tests and verifies the importance
of TF averaging for a reliable selection of direct-path bins in the
binaural case.

2. System model
Consider a static scenario in which a speech source and a binau-
ral array are located in a reverberant environment. The sound-
field at the array’s position can be modeled as a composition of
Q plane-waves emitted by Q far-field sources, where a source
can represent a direct sound, or, for example, a reflection due to
room boundaries. The binaural signal in the short-time-Fourier-
transform (STFT) domain can be expressed as

p (τ, ω) = pd (τ, ω) + pr (τ, ω)

= h(ω, ψ0)s0 (τ, ω) +

Q−1∑
q=1

h(ω, ψq)sq (ω, τ) , (1)

where τ and ω denote the time and the frequency indices, re-
spectively. p (τ, ω) =

[
pl (τ, ω) , pr (τ, ω)

]T
, where pl (τ, ω)

and pr (τ, ω) are the STFT of the left and right microphone
signals, respectively. sq (τ, ω) denotes the STFT of the q-th
source signal that originates from direction ψq , and h (ω, ψq)
is the head-related transfer function (HRTF) from ψq . The for-
mulation in (1) assumes that the multiplicative transfer func-
tion (MTF) approximation [17] holds, i.e. the length of the
HRTF filters h (ω, ψ) (in time), is significantly shorter than
the length of the STFT window. The representation in (1)
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can be decomposed into pd (τ, ω) = h(ω, ψ0)s0 (τ, ω) and
pr (τ, ω) =

∑Q−1
q=1 h(ω, ψq)sq (ω, τ), which denotes the di-

rect and the reverberant parts, respectively. The direct part bears
the DOA information of the speaker. Therefore, DOA estimates
for bins with a dominant direct part are expected to be more ac-
curate than DOA estimates for bins with a dominant reverberant
part, in which the desired DOA information is distorted by re-
flections. To improve localization accuracy under reverberation,
various direct-path dominance (DPD) tests have been proposed
that aim to identify the direct-path bins. Given a set of direct-
path bins selected by a DPD test, bin-wise DOA estimation is
typically performed, followed by statistical analysis to fuse the
estimates [18, 19, 20, 21].

3. Overview of direct-path dominance tests
In this section, an overview of current DPD tests is presented.
The various tests are classified into two classes, where one class
employs averaging over TF bins, while the other class does not
incorporate averaging. Two tests, one from each class, are pre-
sented in more detail for the binaural case.

3.1. DPD tests incorporating averaging

Most of the current DPD tests incorporate averaging. The
speech onset detection based test [13] uses subtraction of the
signal power from consecutive time frames to detect drastic in-
crements in the signal envelope. The consistency based tests in
[14, 15] use averaging of DOA estimates (one per bin) in order
to assess the estimates’ spread, which is used to grade the bins.
The direct-to-reverberant ratio (DRR) based test in [12] uses
averaging over time frames to estimate the spatial covariance
matrix, while in the tests in [8, 11, 10], covariance matrices are
further smoothed over frequencies to decorrelate coherent re-
flections. The DPD test presented in [11], referred to here as
the sigma-ratio test, is presented next and used in the remainder
as an example for studying DPD tests that employ averaging.

The sigma-ratio test selects bins with a spatial covariance
matrix of unit rank, suggesting the existence of a single domi-
nant source, which is assumed to be the direct sound from the
speaker. The sigma-ratio test incorporates frequency smooth-
ing and a focusing process. The frequency smoothing is ap-
plied prior to the rank test in order to decorrelate coherent
sources preventing the selection of bins with multiple coher-
ent reflections. The focusing process aims to remove the fre-
quency dependence of the HRTF h (ω, ψ) in order to pre-
serve the spatial information during the successive frequency
smoothing operation. To construct the spatial covariance ma-
trix at (τ0, ω0), focusing is first applied to a rectangular window
Ω(τ0,ω0) centered about (τ0, ω0). The focusing is performed by
multiplying p (τ, ω) for each bin by a corresponding focusing
transformation T (ω, ω0) that satisfies T (ω, ω0)h (ω, ψ) =
h (ω0, ψ) , ∀ψ. With ideal focusing, the transformed array sig-
nal at (τ, ω) ∈ Ω(τ0,ω0) is given by

p̃ (τ, ω) = T (ω, ω0)p (τ, ω) = H (ω0) s (τ, ω) , (2)

where H (ω0) = [h (ω0, ψ0) , ...,h (ω0, ψQ)] is a 2×Q HRTF
matrix. The smoothed spatial covariance matrix of the trans-
formed array signal at (τ0, ω0) can be expressed as [11]

Sp (τ0, ω0) =
∑

(τ,ω)∈Ω

p̃ (τ, ω) p̃H (τ, ω)

= H (ω0)Ss (τ0, ω0)HH (ω0) , (3)

where H denotes the conjugate transpose, and
Ss (τ0, ω0) =

∑
(τ,ω)∈Ω s (τ, ω) sH (τ, ω) is the Q × Q

cross-correlation matrix of the source signals, where
s (τ, ω) = [s0 (τ, ω) , ..., sQ−1 (τ, ω)]T is the source sig-
nals vector. After smoothing, Ss (τ0, ω0) is expected to be of
full rank with a low condition number, such that TF bins with a
single dominant source can be identified by examining the rank
of Sp (τ0, ω0). The set of bins selected by the sigma-ratio test
is

ASIGMA-RATIO =

{
(τ0, ω0) :

σ1 (τ0, ω0)

σ2 (τ0, ω0)
> T HSIGMA-RATIO

}
,

(4)
where σ1 (τ0, ω0) and σ2 (τ0, ω0) are the largest and second
largest (which is also the smallest in the binaural case) singular
values of Sp (τ0, ω0) and T HSIGMA-RATIO is a chosen threshold.

3.2. DPD tests not incorporating averaging

Tests that do not incorporate averaging include the directiv-
ity based DPD test [9] and the local space-domain distance
(LSDD)-DPD test [22, 23]. The LSDD-DPD test [23] is pre-
sented next and is used hereafter for studying tests that do not
employ averaging.

The LSDD-DPD test selects bins in which the microphone
signal is similar to an HRTF, suggesting the existence of a sin-
gle source. The Hermitian angle [24] between the microphone
signal p (τ, ω) and an HRTF h (ω, ψ) for an individual bin is
used to quantify this similarity. The LSDD measure at (τ, ω) is
defined as [23]

LSDD(τ, ω) = min
ψ

{
cos−1

( ∣∣hH (ω, ψ)p (τ, ω)
∣∣

‖h (ω, ψ)‖ ‖p (τ, ω)‖

)}
,

(5)
where ‖·‖ is the 2-norm. The LSDD measure ranges between
0 and π

2
, where low LSDD values indicate high similarity to a

single source. TF bins with a low LSDD value are therefore
assumed to be dominated by a single source. This assumption
is examined in the next section. The set of bins selected by the
LSDD-DPD test is

ALSDD = {(τ, ω) : LSDD (τ, ω) < T HLSDD} , (6)

where T HLSDD denotes a chosen threshold.

4. Analysis of DPD tests with and without
TF averaging

The various DPD tests have been shown to perform well in
the original papers with the arrays to which they were applied.
However, as shown here, tests that do not incorporate averaging
over TF bins seem to fail when applied to binaural arrays. This
section presents an analysis of sigma-ratio and of the LSDD-
DPD measures for two extreme cases, in which the microphone
signals are dominated by the direct sound or by reverberation,
in order to provide an insight into the effect of TF averaging in
the binaural case.

For TF region Ω(τ0,ω0) with a dominant direct part, the mi-
crophone signals at (τ, ω) ∈ Ω(τ0,ω0) are similar and approxi-
mately equal to p̃ (τ, ω) ≈ h(ω0, ψ0)s0 (τ, ω). Therefore, the
unit rank matrices p̃ (τ, ω) p̃H (τ, ω) , (τ, ω) ∈ Ω(τ0,ω0) are
also similar, leading to a spatial covariance matrix Sp (τ0, ω0)
of unit numerical rank and to a high sigma-ratio value. For
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TF region Ω(τ0,ω0) with a significant reverberant part, the mi-
crophone signals at (τ, ω) ∈ Ω(τ0,ω0) approximately equal
p̃ (τ, ω) ≈

∑Q−1
q=1 h(ω0, ψq)sq (τ, ω). The reflections’ am-

plitudes {sq (τ, ω)}Qq=1 are affected by factors such as distance
dependent attenuation and phase, which has a linear dependence
on ω, and thus varying with ω. These variations imply that, for
a TF region Ω(τ0,ω0) with a sufficiently wide frequency range
and with two or more dominant reflections, the vectors p̃ (τ, ω)
in Ω(τ0,ω0) are likely to be diverse, which is likely to lead to a
matrix Sp (τ, ω) of full rank and to a small sigma-ratio value.

The LSDD measure, which does not employ averaging, is
now analyzed. Direct-path bins will yield low LSDD values
due to the small angle obtained for speaker direction. For bins
with significant reverberation, the LSDD (or other measure that
does not employ averaging and that is based on the similarity
to a single source) will exhibit small values if there exists some
direction ψ for which

p (τ, ω) ≈ z (τ, ω)h(ω, ψ), (7)

where z (τ, ω) is an arbitrary complex scalar. Let us as-
sume, without loss of generality, that h (ω, ψ) and p (τ, ω)
are normalized such that their first entry equals 1, namely

h(ω, ψ) =
[
1,∆Lh (ω, ψ) ej∆φh(ω,ψ)

]T
and p (τ, ω) =

[1,∆Lp (τ, ω) ej∆φp(τ,ω)]T , where ∆Lh (ω, ψ) =
∣∣∣ hl(ω,ψ)
hr(ω,ψ)

∣∣∣
and ∆Lp (τ, ω) =

∣∣∣ pl(τ,ω)
pr(τ,ω)

∣∣∣ and ∆φh (ω, ψ) = ∠ hl(ω,ψ)
hr(ω,ψ)

and

∆φp (τ, ω) = ∠ pl(τ,ω)
pr(τ,ω)

are the ILDs and IPDs of p (τ, ω) and
h(ω, ψ), respectively. With this normalized representation it
follows that (7) is maintained iff there exist some ψ for which

∆φp (τ, ω) ≈ ∆φh (ω, ψ) (8)

and
∆Lp (τ, ω) ≈ ∆Lh (ω, ψ) . (9)

However, at frequencies for which the interaural distance d is
larger than half a wavelength λ, typically above 1 kHz for a
human head, ∆φh (ω, ψ) can have any value between −π and
π, so that (8) is certainly met for at least one direction ψ∗. As
frequency increases, the IPD is ambiguous and (8) is satisfied
for an increasing number of directions ψ∗1 , ..., ψ∗N . Therefore,
at these frequencies, low LSDD values are obtained if (9) is
satisfied for some ψ∗ ∈ {ψ∗1 , ..., ψ∗N}. This is a mitigating con-
dition that may be satisfied even for bins with significant rever-
beration, leading to their selection, and consequently degrading
the performance of tests that do not incorporate averaging. At
frequencies for which d < λ

2
, ∆φh (ω, ψ) can take any value

between − 2πd
λ

and 2πd
λ

. However, ∆φp (τ, ω) also tends to
be closer to zero due to the correlation between the reverberant
signals pl (τ, ω) and pr (τ, ω), which increases as frequency de-
creases [25]. Therefore, (8) is likely to be maintained also for
d < λ

2
and so the above analysis may be valid for the entire

frequency range.
Incorporating averaging can lead to a stricter condition than

(9), and, consequently, to a reduction in the false alarm rate. The
modified LSDD measure is defined as

modified LSDD(τ0, ω0) =

min
ψ

 1

J

∑
(τ,ω)∈Ω(τ0,ω0)

cos−1

( ∣∣hH (ω, ψ)p (τ, ω)
∣∣

‖h (ω, ψ)‖ ‖p (τ, ω)‖

) ,

(10)

where J denotes the cardinality of Ω(τ0,ω0). From (10) it fol-
lows that in order for the modified LSDD measure to be small
the angle between p (τ, ω) and h (ω, ψ) should be small for the
same ψ for each of the bins in Ω(τ0,ω0). This condition is satis-
fied for Ω(τ0,ω0) with a dominant direct part and it is unlikely to
exist for Ω(τ0,ω0) with a significant reverberant part for which
the vectors p (τ, ω) in Ω(τ0,ω0) are diverse.

5. Simulation study
The results in the previous section suggest that bins with signif-
icant reverberation may be selected by tests that do not incorpo-
rate averaging. The current section summarizes the simulations
that have been conducted to examine the effect of averaging on
a test performance. A scenario of a single speaker in a typ-
ical reverberant room was considered and the performance of
the studied DPD tests was examined. For binaural arrays, es-
timating the DOA in 3D may be challenging due to the small
number of microphones. Therefore, to prevent errors due to
the fundamental limits of the array, a speaker was placed at the
array frontal horizontal plane and only speaker azimuth was es-
timated.

5.1. Setup

Reverberant recordings due to a single speaker in a room were
simulated. A rectangular room of dimensions 8× 5× 3 m3 was
simulated using the image method [26] with a wall reflection
coefficient of R = 0.92 that leads to an approximate reverber-
ation time of T60 = 0.8 s. The Neumann KU-100 binaural ar-
ray [27] was located at [x, y, z] = [2, 1.5, 1.7] and the speaker,
simulated as a point source, was placed 1.5 m away from the ar-
ray at the same hight with azimuths varying from −70◦ to 70◦,
spaced by 5◦. For each speaker location, a speech signal with
a length of approximately 4 s, and a sampling frequency of 16
kHz, was randomly selected from a set of fifteen speech signals,
that were taken from the TIMIT database [28]. Finally, white
Gaussian sensor noise with an SNR of 30 dB was added to the
binaural signal.

The binaural signal was transformed to the STFT domain
using a 512 samples (32 ms) Hann window with an overlap
of 16 ms. The operating frequency range for all tests was
0.5− 8 kHz. The sigma-ratio based DPD test was implemented
with the focusing transformations proposed in [11]. The spa-
tial covariance matrices were computed using (3) with a win-
dow Ω(τ0,ω0) of 3 time frames and 15 frequencies. For the
sigma-ratio test, speaker azimuth was estimated at the selected
bins using the MUSIC algorithm [29] with a source subspace
of a single dimension. The Neumann KU-100 HRTF data set,
which includes HRTF samples from 2702 directions, was used
for computing the LSDD measures [27]. The argument ψ in (5)
and (10) was restricted to take only directions along the array
frontal horizontal plane. The modified LSDD-DPD test mea-
sure was computed using (10) with a window Ω(τ0,ω0) of 1
time frame and 15 frequencies. In both the LSDD-DPD test
and its modification, speaker azimuth at the selected bins was
estimated by the argument ψ that yields the minimum angle.
For all tests, an energy threshold was employed, automatically
rejecting 10% of bins with the lowest power, where the power at
(τ, ω) was computed as

∣∣pl (τ, ω)
∣∣+ |pr (τ, ω)|. The threshold

of the various tests was set such that only a percentile of top-
rated bins will pass the test. This approach to threshold selec-
tion was chosen so that the different tests, which use a diverse
set of measures, could be evaluated on a common basis.
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Figure 1: Averaged (over speaker directions) bias and standard
deviation of azimuth estimates from selected bins as a function
of the percentile of selected bins.

5.2. Results

The averaged (over speaker directions) bias and standard devi-
ation of azimuth estimates from selected bins with the studied
tests is plotted in Fig. 1 as a function of the percentile of top-
rated bins. Figure 1 shows that the performance of the LSDD-
DPD test is inferior to that of the sigma-ratio and the modified
LSDD-DPD tests. Figure 1 also shows that the standard devi-
ation in the LSDD test increases as the percentage of selected
bins decreases. These results suggest that the LSDD measure is
not reliable for identifying the direct-path bins in the binaural
case, validating the arguments presented in Section 4.

To specifically investigate the false alarm rate, the receiver
operating characteristic (ROC) of the studied tests is exam-
ined. A two hypotheses detection problem is defined with
H0 : DRR > 3 dB and H1 : DRR ≤ 3 dB. The DRR of the
sound pressure at the origin (the center of the head) in free-field

is computed at (τ, ω) as 10 log10
|ad00(τ,ω)|2
|ar00(τ,ω)|2 , where ad00 (τ, ω)

and ar00 (τ, ω) denote the zeroth order spherical harmonics co-
efficient of the plane-wave density at the origin due to the direct
and the reverberant part, respectively. Letting A (T H) denote
the set of selected bins and ADRR>3 denote the set of bins with
DRR > 3, the probability of detection and the probability of
false alarm can be assessed by defining

PD (T H) =
|A (T H) ∩ ADRR>3|

|ADRR>3|
(11)

PFA (T H) =

∣∣A (T H) ∩ ADRR>3

∣∣∣∣ADRR>3

∣∣ , (12)

where |·| and (·) denote the cardinality and the complement of a
set, respectively. Figure 2 depicts the ROC of the studied tests.
The dashed line denotes the 45◦ ROC, which can be attained by
a detector that randomly selects x percent of the bins, ignoring
all data, leading to PFA = PD = x

100
. Figure 2 shows that the

ROC of the LSDD-DPD test is close to the 45◦ ROC, and that
the ROCs of the sigma-ratio and modified LSDD-DPD tests are
higher, implying that for a given detection rate their false alarm
rate will be lower than that of the LSDD-DPD test. The plus
marks on the ROCs of the LSDD-DPD test and its modifica-
tion correspond to thresholds that lead to a selection of a 10%
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Figure 2: ROC for the studied tests.
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Figure 3: Spectrogram of the signal at the left ear. Top 10%: (a)
modified LSDD, (b) LSDD; selected bins are marked in black.

percentile of top-rated bins. These points correspond to a false
alarm of about 0.1 and to detection of about 0.1 for the LSDD-
DPD test and about 0.25 for its modification.

Figure 3 depicts the bins selected by the LSDD-DPD test
and its modification with these thresholds (10% false-alarm
rate) for one of the simulated scenarios in which the speaker was
located at an azimuth of 70◦. Figure 3 shows that the bins se-
lected by the modified LSDD-DPD test are concentrated around
speech onsets, where the direct path tends to be dominant, while
the bins selected by the LSDD-DPD test are spread over differ-
ent TF regions, suggesting that bins with significant reverbera-
tion are selected.

6. Conclusions
DPD tests that do not incorporate averaging have been shown
to perform well with the original arrays on which they were ap-
plied. The current work has highlighted the weaknesses of these
tests for binaural arrays. The cause of this failure was shown to
be the similarity of bins with significant reverberation to bins
with single source signals, leading to their selection by the test.
This similarity is shown to occur occasionally, leading to a high
false alarm rate. It is further demonstrated that incorporating
averaging over TF bins can improve the performance.
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