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Abstract

Acoustic parameters, like the direct-to-reverberation ratio
(DRR), can be used in audio processing algorithms to per-
form, e.g., dereverberation or in audio augmented reality. Of-
ten, the DRR is not available and has to be estimated blindly
from recorded audio signals. State-of-the-art DRR estimation
is achieved by deep neural networks (DNNs), which directly
map a feature representation of the acquired signals to the DRR.
Motivated by the equality of the signal-to-reverberation ratio
and the (channel-based) DRR under certain conditions, we for-
mulate single-channel DRR estimation as an extraction task of
two signal components from the recorded audio. The DRR can
be obtained by inserting the estimated signals in the definition
of the DRR. The extraction is performed using time-frequency
masks. The masks are estimated by a DNN trained end-to-end
to minimize the mean-squared error between the estimated and
the oracle DRR. We conduct experiments with different pre-
processing and mask estimation schemes. The proposed method
outperforms state-of-the-art single- and multi-channel methods
on the ACE challenge data corpus.
Index Terms: acoustic parameter, direct-to-reverberation ratio
(DRR) estimation, time-frequency mask, deep learning, ACE
challenge

1. Introduction
The reverberation time T60 and the direct-to-reverberation ratio
(DRR) are essential for many audio processing algorithms. The
DRR is defined as the energy ratio between the direct and rever-
berant parts of a room impulse response (RIR) [1]. It is used,
for example, in speech dereverberation [2–4], or source distance
estimation [5,6]. In practice, the DRR often has to be estimated
blindly from captured audio, as the RIR is not available.

In 2015, the acoustic characterization of environments
(ACE) challenge provided a data corpus to evaluate and com-
pare the performance of T60 and DRR estimation algorithms
[7]. The estimation of the DRR, thereby, showed to be chal-
lenging. Multi-channel recordings are generally exploited for
DRR estimation due to the spatial information several micro-
phones provide [8–13]. The direct and reverberation compo-
nents are usually estimated separately, and the DRR is based
on their ratio. Hioka et al. [8] proposed to use two beamform-
ers to estimate the power spectral density (PSD) of direct sound
and reverberation, respectively. This algorithm shows the best
results in the ACE challenge. In [9], two spatial correlation ma-
trices, one for the direct and the other for reverberant sound,
are utilized to estimate the corresponding power spectra. Chen
et al. [11] proposed an algorithm based on a theoretical rela-
tionship between particle velocities and sound pressure, and the

DRR. However, these methods heavily depend on a priori infor-
mation about the direction-of-arrival (DOA) of the sound source
w.r.t. the microphone array. In [14, 15], the authors proposed
single- and multi-channel DRR estimation algorithms based on
variants of the speech-to-reverberation modulation energy ratio
(SRMR) metric, which can be mapped to the DRR, linearly.

For single-channel DRR estimation, state-of-the-art results
are obtained using deep neural networks (DNNs), which di-
rectly map a feature representation of the input to the DRR.
In [16], the authors proposed to use a recurrent neural network
(RNN) to learn a nonlinear mapping from 134 frame-based fea-
tures extracted from the captured speech to the DRR. Xiong
et al. [17–19] proposed to estimate the DRR and the T60 via
a multi-layer perceptron which maps a 2D Gabor feature rep-
resentation to the T60 and the DRR. The authors showed that
jointly estimating the DRR and the T60 with a single model
yields better results than separate estimation [18]. However,
DRR estimation remains challenging, as obtained Pearson cor-
relation coefficients are 0.6 or lower.

Considering the definition of the DRR, it can be obtained
based on the (prewhitened) direct and (prewhitened) reverberant
signal components (see Section 3) [4]. Consequently, we pro-
pose to formulate DRR estimation as an extraction task. Time-
frequency masking techniques are widely used to extract de-
sired signal components from a mixture. Typically, such masks
are estimated via a DNN from an input feature representation
of the captured audio. Subsequently, the masks are applied
to the short-time Fourier transform (STFT) representation of
the input to extract the desired signal components. Masking
techniques have also been applied for dereverberation [20, 21],
where the direct and reverberant signal components have been
estimated [20]. In this paper, we propose to use masks similar
to [20] to obtain direct and reverberant signal components. Sub-
sequently, these components are used for DRR computation. In
contrast to [20], we propose to train the mask-DNN end-to-end
with the mean-squared-error between the estimated and the or-
acle DRR.

The remainder of this paper is structured as follows. In
Section 2, we introduce a signal model for DRR estimation.
Subsequently, in Section 3, we present our proposed methods.
The data sets are described in Section 4 followed by a thorough
evaluation and comparison of our proposed methods to state-of-
the-art in Section 5.

2. Problem Formulation
We assume a single microphone capturing a time-domain mix-
ture y[t] consisting of reverberant speech x[t], and noise v[t],

y[t] = x[t] + v[t], (1)
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with the discrete time-index t. The speech x[t] is obtained by
convolving a source signal s[t] with a RIR h[t], i.e.,

x[t] = s[t] ∗ h[t] = s[t] ∗ (hd[t] + hr[t]), (2)

where h[t] can be divided in a direct hd[t] and a reverberant
component hr[t]. Similarly, we can divide x[t] in its direct
xd[t] = s[t] ∗ hd[t] and reverberant xr[t] = s[t] ∗ hr[t] com-
ponents. Our objective is to extract from y[t] the direct-to-
reverberation ratio (DRR), an acoustic parameter which spec-
ifies the ratio of the direct to the reverberant energy in dB. The
DRR, thereby, can be obtained from h[t],

DRR = 10 log10

(∑
t h

2
d[t]∑

t h
2
r[t]

)
= 10 log10

( ∑td+t0
t=td−t0

h2[t]∑td−t0
t=0 h2[t] +

∑∞
t=td+t0

h2[t]

)
dB,

(3)

where td and t0 specify the central sample index and the tem-
poral spread of hd, respectively. From (3), it is clear that the
DRR is a purely channel-based parameter which is independent
of s[t] and v[t].

Under certain conditions, the DRR is equivalent to the
signal-to-reverberation ratio (SRR),

SRR = 10 log10

(∑
t x

2
d[t]∑

t x
2
r[t]

)
dB, (4)

which is dependent on s[t]. For further analysis of the
equivalence between the DRR and the SRR, we define the
STFT representations of s, y, xd, xr , v as S[n, k], Y [n, k],
Xd[n, k], Xr[n, k], V [n, k], respectively, where n is the time-
frame and k the frequency index. In [4], the authors showed
the DRR equals the SRR if |S| is frequency independent.
This can be verified via Parseval’s theorem, with SRR =∑

k |S[k]|
2 |Hd[k]|2 /

∑
k |S[k]|

2 |Hr[k]|2. When |S[k]| =
|S|, then |S[k]|2 can be taken out of the sum in the numerator
and denominator in Parseval’s theorem and cancels out yielding
the same result as the DRR. Additionally, the authors investi-
gated spectral prewhitening methods to enable DRR estimation
from the prewhitened versions of Xd and Xr . The definition of
Xd,Xr in STFT domain and the computation of the prewhiten-
ing, thereby, showed to be crucial and challenging.

3. Proposed Method
Motivated by the findings about the DRR and the SRR in [4],
we formulate single-channel DRR estimation as a data-driven
signal extraction task. In the next section, we describe the DRR
estimation procedure, followed by details of the DNN architec-
ture and training.

3.1. Signal-Based DRR Estimation

We propose to estimate two signals, X1 and X2, from Y such
that, when inserted into the DRR definition, we obtain an esti-
mate of the DRR in dB, i.e.,

D̂RR = 10 log10

(∑
n,k |X1[n, k]|2∑
n,k |X2[n, k]|2

)
. (5)

The signals X1 and X2, thereby, are obtained using time-
frequency masks. These masks are estimated with a DNN and
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Figure 1: Overview of the proposed methods for DRR estima-
tion with a single mask in a) and two masks in b). In both cases
estimates X1 and X2 are obtained. The DRR is estimated by
inserting these estimates in (5).

subsequently applied element-wise to Y to compute X1 and
X2. The use of time-frequency masks for this problem is mo-
tivated by [20, 21] where the authors achieved state-of-the-art
results for the extraction of direct and reverberant signal com-
ponents from Y .

3.1.1. Single Mask

First, we assume that the DNN estimates a single mask
M [n, k] ∈ [0, 1]. An overview of the procedure is given in
Figure 1a. As the DRR is a power-based parameter, we propose

X1[n, k] = Y [n, k] ·
√
M [n, k],

X2[n, k] = Y [n, k] ·
√

(1−M [n, k]),
(6)

where the overall signal power is preserved as (|Y [n, k]| ·√
1−M [n, k])2 + (|Y [n, k]| ·

√
M [n, k])2 = |Y [n, k]|2. In

a frequency band, the relation of the estimated and the residual
masks are fixed in (6).

In [4], the authors proposed spectral prewhitening to esti-
mate the DRR from signals, i.e., a frequency band dependent
gain G[k]. With a single estimated mask with power preserva-
tion, such a gain cannot be frequency dependent. In Section 5,
we compare the performance of a DNN trained with a spec-
trally prewhitened Y [k] ·G[k] to another DNN trained with the
non-prewhitened Y [k]. Please note that when prewhitening is
applied, the complete pipeline from DNN input to mask appli-
cation uses the prewhitened G[k] · Y [k] instead of Y [k].

3.1.2. Dual Mask

To allow the DNN to learn the prewhitening, we propose to
estimate two independent masks instead of one mask with the
DNN, such that

X1[n, k] = Y [n, k] ·M1[n, k],

X2[n, k] = Y [n, k] ·M2[n, k],
(7)

whereM1 andM2 are the estimated masks. AsM1 andM2 are
estimated without the constraint that M2

1 +M2
2 = 1 as for a

single mask, the DNN can learn the prewhitening factor G[k].
An overview of the procedure is given in Figure 1b.
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3.2. DNN Architecture and Training

We define
I[n, k] = log10 (|Y [n, k]|+ ε) , (8)

as DNN input, where ε ∈ R+ is a small constant to avoid ze-
ros in the log. The DNN architecture consists of 2 bidirectional
long short-term memory layers [22] (BLSTMs) with 600 neu-
rons each followed by a feed-forward layer of shape (600, 257)
for one and (600, 2 · 257) for two masks with sigmoid activa-
tion to ensure that M [n, k] ∈ [0, 1]. The DNN architecture is
similar to the one employed in [20], where it was used to extract
Xd and Xr . Here, we extract X1 and X2, instead.

We propose to train the DNN end-to-end for the DRR with
the loss function

J =
(

DRR− D̂RR
)2
, (9)

such that we do not need to define X1 and X2 for training,
which is required in [20]. Please note that consequently, X1

and X2 may differ from the (prewhitened) Xd and Xr as they
are defined by the DNN during training. In addition, as the DRR
is a purely channel-based parameter, the end-to-end training ap-
proach allows training with measured signals given the DRR is
known or can be obtained from measured RIRs.

All DNNs were trained for 100 epochs using the Adam op-
timizer [23] with a learning rate of 1e-3 and a dropout layer
of 0.5 after the first BLSTM layer. The batch-size was 256.
For evaluation, we selected the model with the lowest valida-
tion loss.

4. Data Sets
We generated two training and validation sets using simulated
RIRs, noise, and speech from LIBRI [24]. The test set is from
the ACE challenge (ACE Eval), which allows direct comparison
to state-of-the-art methods [7] (measured RIRs). Each training
set consists of 36000, each validation set of 3600, and the test
set of 27000 files. Each file has a duration of four seconds and
a sampling frequency of 16 kHz.

4.1. Data Set Generation

In the following, we describe the process of generating a sin-
gle file in the training and validation set. We convolve speech
from the respective set of LIBRI with the simulated RIRs in-
troduced in Section 4.3. Subsequently, noise is added with a
signal-to-noise ratio (SNR) ∈ [0, 10, 20] dB. The noise is sim-
ulated similar to the noise in the ACE challenge and is of type
ambient, fan, or babble. For the noise simulation, we adopted
the procedure of [25].

The ACE Eval corpus consists of 6 different microphone
configurations with 4500 samples, each. The configurations are
Single (1 mic.), Chromebook (2 mic.), Mobile (3 mic.), Crucif
(5 mic.), Lin8Ch (8 mic.), and EM32 (32 mic.). For single-
channel evaluation, only the first microphone was used. We
refer to the merge of all first microphones of all configurations
as seventh configuration All.

The following processing is applied to training, validation,
and test files. The files are normalized in time-domain such that
max(|y[t]|) = 1 and cut/zero-padded to a length of four sec-
onds. Please note that the normalization showed to be crucial.
After the normalization, y is transformed in STFT domain with
a hop-size of 10 ms and a Hann window of 32 ms.

4.2. Prewhitening

In Section 3.1, we described that extraction-based methods re-
quire prewhitening to estimate the DRR. For that, we compute
the prewhitening factor G from the speech files in the LIBRI
training set by

1

G[k]
=

√√√√ 1

FN

F∑
f=1

N∑
n=1

|Sf [n, k]|2, (10)

where N is the total number of time-frames per file, f is the
file index and F the total number of files in the training set. We
conduct experiments with and without prewhitening, yielding a
training, validation, and test set with and without prewhitening.
Subsequently, prewhitening is marked by the subindex ◦pw with
the DNN name.

4.3. Room Impulse Response Generation

The training and validation RIRs are generated using the
source-image-method [26, 27]. The simulation parameters
include seven rooms as specified by the ACE challenge
[7]. We considered different source-microphone distances ∈
{0.4 m, 0.5 m, 0.7 m, 1.1 m, 1.3 m, 1.5 m, 1.7 m, 2 m, 3 m} for
which 10 source-microphone positions were sampled per room.
This configuration yields 7 · 9 · 10 = 630 source-microphone
position pairs. For the rooms, we consider a reverberation time
ranging from 0.3 s to 0.7 s, with an increment of 0.1 s, to cover
a similar DRR range as present in the ACE challenge.

To generate one RIR, we randomly sample from the T60

range and the source-microphone position pairs. For each re-
verberant speech file, a new RIR is generated. We calculate the
oracle DRR from the RIR as in (3). Since the corresponding
equalization filters in [28] are not available, the index td is ob-
tained by selecting the absolute peak position of the RIR, and
t0 is set to 128 as in [28].

5. Performance Evaluation
We evaluate three DNNs on the ACE Eval set for DRR esti-
mation and report the bias, the mean-squared-error (MSE), and
the Pearson correlation coefficient (ρ) as proposed by the ACE
challenge. We trained two DNNs with (5), (6), (9), one with
and the other without prewhitening. These single mask models
are denoted by SiM and SiMpw, respectively. The third model
is trained without prewhitening for two masks with (5), (7), (9)
without prewhitening and is denoted by DuM.

5.1. Evaluation of Different Microphone Configurations

We compare our proposed methods on all files in ACE Eval
in Table 1 in the microphone configuration All. The proposed
DuM performs best in terms of MSE compared to SiM and
SiMpw. In our experiments, the MSE contained a lot of out-
liers, which makes a model comparison based on the MSE hard
(as shown in Figure 2). In terms of the correlation coefficient
ρ, all proposed models perform on par. Contrary to our expec-
tations, neither prewhitening nor the use of two masks helped
to improve ρ. For that reason and due to space constraints, we
subsequently only report the results of DuM as it achieved the
lowest MSE and bias in Table 1.

The ACE challenge provides performance results of differ-
ent state-of-the-art algorithms for different microphone config-
urations in ACE Eval. We report these results for recapitula-
tion and the performance of DuM in Table 1. Our proposed
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Method Mic. Conf. Bias MSE ρ

DuM All -0.6 9.0 0.62
SiM All -1.02 9.7 0.61
SiMpw All -1.29 10.2 0.63

DuM Single -0.18 8.4 0.71
ROPE [19] Single - - 0.56
jROPE-IV [18] Single - - 0.62
NIRAv2 [16] Single -1.85 14.8 0.56

DuM Mobile -0.24 6.4 0.69
PSD* [8] Mobile 1.07 8.1 0.58

DuM Chr.b. -1.52 13.7 0.30
DENBE* [13] Chr.b. -4.25 34.1 0.31

DuM Crucif -0.19 8.0 0.73
NOSRMR* [14] Crucif -4.1 31.1 0.08

DuM EM32 0.18 7.3 0.50
Part. vel.* [11] EM32 -2.38 10.4 0.45

DuM Lin8Ch -1.67 10.3 0.61

Table 1: Experimental results for blind DRR estimation on ACE
Eval of our proposed and state-of-the-art methods. The results
of the state-of-the-art methods are extracted from the respective
papers. Note that [18, 19] estimated the early to reverberation
ratio not the DRR and show that ρ can nevertheless be com-
pared. The MSE and bias values are in dB and multi-channel
algorithms are marked with *.

method outperforms single-channel state-of-the-art in terms of
MSE, bias, and ρ in the ACE microphone configuration Single.
The difference in ρ to the second-best method, jROPE-IV, is
0.09. In contrast to our approach, jROPE-IV was trained for
T60 and a metric similar to the DRR (see caption Table 1) esti-
mation, simultaneously.

When compared to multi-channel DRR estimators, our
single-channel method outperforms the baselines in terms of
MSE, bias, and ρ, except in Chromebook. There both meth-
ods performed poorly with ρ ≈ 0.3. Note that the performance
of the proposed and the baseline methods strongly depends on
the microphone configuration. For the proposed method, the
range of ρ is between 0.3 and 0.71 for different microphone
configurations. We assume this to be caused by very different
configuration-dependent recording circumstances. Please also
note that we always used the first microphone in each configu-
ration for our evaluations and that the DRR may be microphone
dependent.

5.2. Evaluation Using the Oracle DRR

To further investigate the performance of DuM, we show the es-
timation error over the oracle DRR in the upper plot of Figure 2
for ACE Eval All. The mean values of the error have slight off-
sets at the extrema of the oracle DRR range. For high oracle
DRRs, DuM underestimates the DRR, whereas, for low oracle
DRRs it tends to overestimate. For oracle DRRs from approxi-
mately 1 to 11 dB, the performance is comparable, and the bias
is close to zero. The opposite bias at the extrema is expected as
the training DRR range is similar to the test DRR range. The
DNN was not trained for DRRs surpassing the test range. Con-
sequently, assuming uncertainty, the DNN tends to map inside

-2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13

−10

0
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E
rr
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ACE Eval

-2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13

−10
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E
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Figure 2: Estimation error of DuM on ACE Eval and a subset
of ACE Eval, where only files larger/equal four seconds were
evaluated (16200 files). Error specifies the difference between
the estimated (dB) minus the oracle DRR (dB).

the training DRR range but not outside, which causes the bias.

We like to draw attention to the large number of outliers in
the upper plot of Figure 2. These outliers distort the MSE results
such that it is hard to compare methods based on the MSE. To
investigate whether the outliers are caused by insufficient tem-
poral context for the DNN, we show a similar boxplot for files
of four seconds or longer from ACE Eval in the lower plot of
Figure 2. As expected, the number of outliers reduces as more
temporal context is given.

6. Conclusion

We proposed to estimate the DRR by two DNN-based mask-
ing techniques for signal extraction with and without prewhiten-
ing. The effect of different masking techniques and prewhiten-
ing on the Pearson correlation coefficient was minor, and the
MSE and bias were slightly better for the dual masking tech-
nique. Our proposed data-driven single-channel methods out-
perform single- and multi-channel state-of-the-art methods on
the widely used and well known ACE Eval set in terms of MSE,
bias, and performed better or on par in terms of Pearson cor-
relation coefficient. Furthermore, the recurrent DNN structure
allows DRR estimation based on variable length inputs.
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