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Abstract
The reverberation time, T60, is an important acoustic pa-

rameter in speech and acoustic signal processing. Often, the T60

is unknown and blind estimation from a single-channel mea-
surement is required. State-of-the-art T60 estimation is achieved
by a convolutional neural network (CNN) which maps a fea-
ture representation of the speech to the T60. The temporal input
length of the CNN is fixed. Time-varying scenarios, e.g., robot
audition, require continuous T60 estimation in an online fash-
ion, which is computationally heavy using the CNN. We pro-
pose to use a convolutional recurrent neural network (CRNN)
for blind T60 estimation as it combines the parametric efficiency
of CNNs with the online estimation of recurrent neural net-
works and, in contrast to CNNs, can process time-sequences
of variable length. We evaluated the proposed CRNN on the
Acoustic Characterization of Environments Challenge dataset
for different input lengths. Our proposed method outperforms
the state-of-the-art CNN approach even for shorter inputs at the
cost of more trainable parameters.
Index Terms: acoustic parameter, online, reverberation time
(T60) estimation, CRNN, deep learning, ACE challenge

1. Introduction
Acoustic parameters are useful to characterize the acoustic
properties of enclosed spaces. The reverberation time, T60, is
one of the most important parameters to quantify the severity
of reverberation. Many speech processing algorithms, e.g., in
speech enhancement [1], or recognition [2], rely on it to mit-
igate the effects of reverberation or improve speech recogni-
tion accuracy. The T60 is defined as the time required for a
60 dB decay in sound energy after switching off a sound source
in steady-state [3]. The energy decay characterized by the T60

is also observable in the energy decay curve (EDC) [4] of room
impulse responses (RIRs) of the respective environment. Given
access to RIRs, models can be fitted to the EDC to extract the
T60. Karjalainen et al. [5] proposed a nonlinear optimization
strategy, where a parametric exponential decay model that in-
corporates a stationary noise floor is fitted to the decay envelope
of the RIR. Nonlinear least-squares optimization is employed
for the decay envelope fitting to search for an accurate and ro-
bust estimation of the decay rate.

In practice, the RIRs are typically unavailable, and blind
estimation remains a challenging task. Consequently, it is de-
sired to estimate the T60 blindly from audio recordings. Ad-
ditive noise, thereby, further complicates T60 estimation [6].
In 2015, the Acoustic Characterization of Environments (ACE)
challenge was held to find the most promising blind T60 esti-
mation methods and to provide real noisy reverberant speech
data for evaluation purposes (ACE Eval) [7]. The best single-
channel T60 estimators were based on traditional signal process-

ing approaches [8, 9]. Prego et al. [8] robustly estimated the T60

by statistically analyzing the signal decay in different frequency
bands obtained by a frame-based energy decay function. Löll-
mann et al. [9] proposed a statistical model-based method for
blind T60 estimation by using maximum-likelihood (ML) opti-
mization to determine the most likely decay rate from the signal.
Other approaches analyze decay rate distributions using model-
based [10] or data-driven methods [11] to extract the T60.

Recently, also deep learning-based methods have been pro-
posed for blind T60 estimation achieving state-of-the-art perfor-
mance on ACE Eval. Lee and Chang [12] used a feedforward
neural network (FNN) to learn a mapping from input features
to the T60 through multiple nonlinear hidden layers. The input
feature representation is composed of reverberant speech decay
rates in the short-time Fourier transform (STFT) domain and
its distribution for each frequency bin. For their approach, a
relatively long input signal is required to make the extracted de-
cay rates reliable, and only one estimate can be obtained at the
end, which makes it difficult to handle time-varying acoustic
scenarios. Gamper et al. [13] proposed a convolutional neural
network (CNN) to estimate the T60 directly from a four-second
long recording of reverberant speech. In contrast to [12], ex-
traction of features is outsourced to the CNN. Experimental re-
sults show that it achieves better performance and has higher
computational efficiency than other methods in the ACE chal-
lenge. However, [13] operates on a fixed-length input to output
one single predicted T60 value. In applications where the T60

changes over time, e.g., robot audition, audio augmented reality,
and speech dereverberation for hearing aids, a real-time online
system is desired to estimate the T60 continuously.

To handle time-varying scenarios, we propose to use a con-
volutional recurrent neural network (CRNN) to estimate the T60

blindly from reverberant noisy speech. The CNN layers ensure
parameter efficiency, whereas the recurrent layers enable on-
line T60 estimation for variable input lengths. The remainder is
structured as follows. In Section 2, we introduce a signal model
followed by a review of [13]. In Section 3, we elaborate on the
proposed T60 estimation with a CRNN. The dataset generation
and an overview of the datasets are given in Section 4. In Sec-
tion 5, we describe experiments and evaluation results based on
ACE Eval including a comparison to [8], [13] and [14].

2. Problem Formulation
We assume a noisy reverberant speech signal in time-domain,
y[t], with discrete-time index, t, captured by a single micro-
phone in a room. The signal y[t] is constructed by convolving a
source speech signal s[t] with a RIR h[t] and adding additional
noise v[t], expressed as

y[t] = h[t] ∗ s[t] + v[t] =
∑
t′

h[t′]s[t− t′] + v[t]. (1)
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The objective is to estimate the reverberation time directly from
y[t] without further information about h or s.

For this task, Gamper et al. [13] proposed a CNN to es-
timate the T60 from a four-second long signal. The architec-
ture consists of six convolutional layers with rectified linear
unit (ReLU) activation functions and one linear fully-connected
layer, as shown in Figure 1. Each convolution layer is followed
by a batch normalization layer (not shown in Figure 1). A
dropout layer is added before the dense layer to prevent over-
fitting. The input of the CNN is the gammatone transformation
of y[t], denoted by Y [k, n] with frequency index k and time
frame index n. The gammatone transform with low spectral res-
olution reduces the model complexity while it is able to show
the relevant information of the task [13]. The CNN is trained to
minimize the mean-squared-error (MSE) between the estimated
T̂60 and the oracle T60,

MSE =
1

T

T∑
i=1

(T̂60i − T60i)
2, (2)

where i represents the sample index and T the batch size dur-
ing training. The CNN has a low computational complexity
and outperforms the competitors in the ACE challenge. The
required fixed-length inputs, however, prevent estimates from
shorter inputs and avoid usage of the complete temporal con-
text assuming longer inputs are given. In addition, the archi-
tecture is not designed to estimate time-variant T60 values due
to its single output. In the following, we present a method that
addresses both issues.

3. Proposed Method
We propose to use a CRNN to perform online blind T60 es-
timation. Figure 2 depicts the proposed CRNN architecture.
The CRNN consists of six convolutional layers with ReLU ac-
tivation followed by a long short-term memory (LSTM) [15], a
max-pooling layer, a dropout layer, and a time-distributed fully-
connected layer.

For the convolutional layers, we adapt the framework from
[13] and employ different temporal stride sizes in layers 2 and
3. Reducing the stride sizes of these two layers from (1, 3) to
(1, 2) has a marginal effect on the estimation accuracy while
allowing for shorter inputs to be fed into the CRNN. The DNN
parameters are summarized in Table 1. The hidden layer size of
the LSTM is 20, which is chosen according to the input size fed
into the LSTM. A max-pooling layer is subsequently applied to
reduce the parameters before the dense layer. The pooling size
is set to 2, as proposed in [16]. The dropout rate after the max-
pooling layer is 0.4. In contrast to [13], we add an additional
ReLU activation function at the output, as the T60 values are
supposed to be positive. The CRNN contains 5611 trainable
parameters compared to 2541 parameters in [13].

The input to T̂60 mapping of the proposed CRNN is shown
in Figure 2. A sliding window of length L with a specific hop-
sizeR is applied to the input, which is subsequently fed into the
CRNN. For each time frame, the CRNN yields one T60 estimate
based on the information of the current windowed input and past
information obtained from the recurrent LSTM structure. The
minimum input length (corresponding to the window length)
that can be fed into the CRNN depends on the kernel and stride
sizes of the CNN part of the CRNN. The hop-sizeR determines
the update time for T̂60.

Our proposed method combines parameter efficient feature
extraction as in [13] with the sequence processing capabilities

conv1 conv2 conv3 conv4 conv5 conv6

size 1× 10 1× 10 1× 11 1× 11 3× 8 4× 7
stride (1, 2) (1, 2) (1, 2) (1, 2) (2, 2) (2, 1)
# filters 5 5 5 5 5 5

Table 1: Specifications of convolutional layers in the CRNN ar-
chitecture.

of LSTMs to achieve low complexity online T60 estimation. We
propose to optimize the CRNN simultaneously for different in-
put lengths with

MSE =
1

TN

T∑
i=1

N∑
n=1

(T̂60i,n − T60i)
2, (3)

where n is the time step index of the LSTM output, and N is
the total number of time steps per speech sample. For evalua-
tion, we use the most recent estimate, i.e., T̂60[N ]. With (3),
in contrast to (2), the CRNN is trained simultaneously for input
lengths ranging from L/fs to L/fs + (N − 1) ·R/fs seconds
with sampling frequency fs.

4. Data Sets
The samples in the experiment are considered to be composed
of reverberant speech and noise. For training data generation,
we artificially generate a large number of labeled training and
validation data samples by simulating the reverberation process
with synthetic RIRs. The test set is the ACE challenge evalua-
tion (ACE Eval) dataset, which allows direct comparison with
state-of-the-art methods reported in [7] and [13].

4.1. Data Preprocessing

The reverberant noisy speech samples are resampled to a sam-
pling frequency of 16 kHz and truncated to four-seconds. The
input level is first processed by an A-weighting filter. The sig-
nal is then converted by the gammatone filterbank with 21 audi-
ble frequency bands that span the range 400 Hz to 6 kHz. The
energy-per-band is calculated using 64 sample long windows
with 32 samples hop-length. Finally, we subtracted the median
value from each gammatone frequency band and standardized
the complete input feature matrix for each sample to obtain an
approximately zero mean and a standard deviation of one. The
size of the pre-processed feature matrix is 21× 1999. The input
feature representation and the selection of parameters are as in
[13].

4.2. Data Generation

The ACE Eval dataset is generated by using the software and
the collection of real recorded speech files provided by the ACE
challenge [7]. The EVAL dataset includes noisy reverberant
speech files from 5 different rooms, with two microphone po-
sitions per room. The noise is of type ambient, fan, or babble
and is mixed with the speech with a signal to noise ratio (SNR)
of 0, 10, and 20 dB. The test set includes the ACE Eval single
microphone configuration data and the first channel of the Eval
multi-microphone configuration data. For evaluation, we only
selected speech longer or equal to 4 s. For training and valida-
tion set generation, we convolve the artificial RIRs described in
Section 4.3 with speech samples from the LibriSpeech Corpus
[17] from training and validation set, respectively. We simulate

5062



329

21

conv1 conv2 conv3 conv4 conv5 conv6 dropout dense

T̂60

1999

21 21

994

21

107

21

49

10

21

4 4 1

15 15
1

input sample

Figure 1: Block diagram of the baseline CNN architecture [13]. A gammatone representation of the input is mapped to the reverberation
time.
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Figure 2: The proposed CRNN architecture. A gammatone rep-
resentation of the input is mapped to the reverberation time.

Dataset RIRs # Speech Samples

training synthetic 35000
validation synthetic 2000
ACE Eval [7] measured 16200

Table 2: An overview of training, validation, and test sets.

the noise similar to the noise in the ACE challenge as [13]. An
overview of the parameters for the training, validation, and test
set is given in Table 2.

4.3. Room Impulse Response Generation

For the training and validation set, RIRs are generated with the
RIR generator [18], which is based on the source image-method
[19]. Subsequently, we give an overview of the acoustic pa-
rameters for the RIR generator. We simulated RIRs for seven
rooms as specified by the ACE challenge [7]. We define the
source-microphone distance setD as {0.7 m, 1 m, 1.3 m, 1.7 m,
2 m, 2.5 m, 3 m, 3.5 m}. For each distance in D, 10 source-
microphone positions are generated, yielding a total of 7 · 8 · 10
= 560 source-microphone positions. To provide a wide range of
T60 values, the reverberation time set is defined from 0.3 s to
1.5 s, with an increment of 0.1 s.

To generate one RIR, the acoustic parameters are randomly
sampled from the T60 range and the source-microphone posi-
tions. For each reverberant speech sample, a new RIR is gener-
ated. The oracle reverberation time T60 is calculated from each
RIR with the method by Karjalainen et al. [5]. This is nec-
essary due to inaccuracies between the input and the obtained
reverberation time when using the RIR generator.

Method Bias (s) MSE (s) ρ
MLP [14] -.0967 .104 .48
QA Reverb [8] -.068 .0648 .778
CNN [13] .0304 .0384 .836
CNN [13] (?) .1163 .0375 .900
CRNN (proposed ?) -.0488 .0206 .917

Table 3: Experimental results on ACE Eval for blind T60 es-
timation of the proposed CRNN for four-second long inputs,
high-performance algorithms [8] [14] in the ACE challenge
and the baseline method [13]. Results obtained from our ex-
periments are marked with ?. The other results are from the
respective papers for recapitulation.

5. Performance Evaluation
We trained two DNNs, the proposed CRNN and the CNN from
[13]. We mark the DNNs we trained with a ?. For training,
we used the Adam optimizer [20], and a learning rate of 0.001.
We trained 100 epochs and selected the model with the lowest
validation loss for evaluation. The performance of the proposed
method is evaluated using the evaluation metrics proposed in
[7], the bias, MSE, Pearson correlation coefficient ρ and, the
real-time factor (RTF).

5.1. ACE Evaluation

The ACE challenge provides bias, MSE and, ρ results of signal
processing and machine learning-based methods for blind T60

estimation on the ACE Eval dataset. For recapitulation, we re-
port these results and also the results from [13] in Table 3. In
addition, we reimplemented and trained the CNN proposed in
[13] using our simulated training set, and report these results
and our CRNN results for blind T60 estimation also in Table 3.
For the CRNN, the MSE is calculated as in (2), using the last
time-step output of the LSTM as T̂60.

In Table 3, the reimplemented CNN achieves similar results
compared to those reported in [13] in terms of MSE. Our pro-
posed CRNN outperforms all state-of-the-art methods in terms
of MSE and ρ, and has a comparable bias as [13]. The high-
est Pearson correlation coefficient ρ = 0.917 indicates the high
prediction accuracy of our proposed method. A boxplot of the
estimation error over the T60 of the CRNN is depicted in Fig-
ure 3. As can be seen, the median values are close to 0 s and
the percentiles are within ± 0.25 s. Better performance can be
observed in the range of lower T60 values similar as in [13]. We
assume that higher T60 values require more context to observe
long energy decays for an accurate estimation.

The RTF is computed by averaging the required DNN pro-
cessing time of 20000 input samples of four seconds on a CPU
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Figure 3: Estimation errors on ACE Eval by the proposed
CRNN. For each box, the notch inside the box is the median, the
edges are the 25th and 75th percentiles, the whiskers extending
above and below show the extreme values, and the outliers are
plotted individually.
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Figure 4: RMSE of the CRNN on ACE Eval over different input
duration lengths.

with an Intel Core i7 processor. The RTF of the CRNN is
approximately 110e-5 and 34e-5 for the CNN. Note that the
CRNN yields 49 T60 estimates for a four-second input, whereas
the CNN just yields a single estimate.

5.2. Effect of Input Duration on Estimation Accuracy

In this section, we investigate the performance of the CRNN as
a function of the sample length. Figure 4 and Figure 5 show the
root-mean-squared-error (RMSE) of the CRNN over the input
sample duration. The window length L/fs is approximately
0.9 s and the hop-size of subsequent context window R/fs is
about 0.0646 s. The time interval ranges from 0.9 to 4 s of
sample length corresponding to N = 49 estimates T̂60. In Fig-
ure 4, the prediction accuracy of T60 values significantly de-
pends on the length of the input sample although trained for all
input sample lengths. The CRNN performs better for longer
sample lengths. For the shortest input sample length of 0.9 s,
the RMSE of ≈ 0.285 s is approximately twice the RMSE at
4 s. The red lines in Figure 4 and 5 mark the equal perfor-
mance point (MSE of 0.0375 s, RMSE of 0.1936 s) of our pro-
posed CRNN and [13]. In Figure 4, the required input sample
length for equal performance is approximately 1.8 s. For longer
input lengths, the CRNN outperforms [13]. In Figure 5, we
analyze the effect of the input sample length on different T60

ranges. For that purpose, we divide the T60 in groups rang-
ing from 0.3 s ≤ T60 < 0.5 s, 0.5 s ≤ T60 ≤ 0.7 s, and
1.1 s ≤ T60 ≤ 1.3 s. Comparable to the results from Fig-
ure 4, more temporal context helps to reduce estimation errors.
The required sample length for comparable performance to [13]
does not depend on different T60 ranges. For a short context, the
estimation in Figure 5 seems to be biased towards the medium
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0.3 s ≤ T60 < 0.5 s
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0.5 s ≤ T60 < 0.7 s
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1.1 s ≤ T60 < 1.3 s

Figure 5: RMSE of the CRNN on ACE Eval over different input
duration lengths for 0.3 s ≤ T60 < 0.5 s (top), 0.5 s ≤ T60 ≤
0.7 s (middle), and 1.1 s ≤ T60 ≤ 1.3 s (bottom).

T60 range as the respective RMSE is smaller compared to low
and high T60s. With increasing context lengths, the T60 esti-
mates improve. High T60 values appear to be harder to estimate
as the respective RMSE is higher at 4 s compared to the RMSE
for the low and medium T60 ranges, similar to the results in Fig-
ure 3. Note that there is a non-linear relation between the decay
and the T60. Consequently, we get larger changes in the decay
at lower T60 compared to those at higher T60. Also, extract-
ing information about a strong decay instead of a weak decay is
less prone to noise. In line with our experiments, higher T60 are
harder to estimate.

6. Conclusion

We presented a CRNN to achieve single-channel online blind
T60 estimation, which can adapt to changing acoustic condi-
tions. The proposed method extends the flexibility of DNNs
for T60 estimation from fixed-length to variable-length inputs
and achieves online T60 estimation. Our proposed method out-
performed other state-of-the-art methods on ACE Eval in terms
of Pearson correlation coefficient and MSE, even with shorter
input lengths. Equi-performance to a CNN baseline with 4 s in-
puts was reached by our CRNN after 1.8 s at the cost of a higher
computational complexity.
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