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Abstract
The performance of sound event localization and detection
(SELD) degrades in source-overlapping cases since features
of different sources collapse with each other, and the network
tends to fail to learn to separate these features effectively. In
this paper, by leveraging the conventional microphone array sig-
nal processing to generate comprehensive representations for
SELD, we propose a new SELD method based on multiple di-
rection of arrival (DOA) beamforming and multi-task learning.
By using multiple beamformers to extract the signals from dif-
ferent DOAs, the sound field is more diversely described, and
specialised representations of target source and noises can be
obtained. With labelled training data, the steering vector is es-
timated based on the cross-power spectra (CPS) and the signal
presence probability (SPP), which eliminates the need of know-
ing the array geometry. We design two networks for sound
event localization (SED) and sound source localization (SSL)
and use a multi-task learning scheme for SED, in which the
SSL-related task act as a regularization. Experimental results
using the database of DCASE2019 SELD task show that the
proposed method achieves the state-of-art performance.
Index Terms: Sound event localization and detection, micro-
phone arrays, beamforming, multi-task learning

1. Introduction
Sound event detection (SED) aims to determine the time period
of acoustic events, and has been widely used in applications
such as robotics, smart home and surveillance [1–3]. Recently
the focus has shifted to not only estimating the temporal infor-
mation of the acoustic event, but also determining the location
of the corresponding sound source. This raises the problem of
joint SED and sound source localization (SSL), namely, sound
event localization and detection (SELD). A microphone array
is usually utilized, such that temporal and spatial samplings are
simultaneously performed to describe the acoustic scene.

Conventionally the SED and SSL are separately treated, and
there have been enormous researches on each problem. Most
of the state-of-art SED systems are now based on deep neural
networks (DNNs) [2–6], and the convolutional neural networks
(CNN) [5–7] and recurrent neural networks (RNN) [4, 5] are
exploited to model the compact representations and the tem-
poral characteristics of the acoustic events, respectively. For
SSL, conventional methods are generally based on analysing the
cross-correlations between the multichannel signals [8–13], in-
cluding the generalized cross-correlation (GCC) [8], the multi-
channel cross-correlation coefficient (MCCC) [14] and the mul-
tiple signal classification (MUSIC) [15–17] based approaches,
etc. Methods based on the DNNs are also proposed [18–20],
which use the cross-correlations as the input feature, and esti-
mate the direction of the arrival (DOA) as a regression or clas-
sification problem.

Since both SED and SSL can be achieved by using a DNN,
to cope with the SELD problem, DNN-based end-to-end sys-
tems can be trained by taking the multichannel temporal spec-
tral features as input, and the SED and SSL results are simulta-
neously obtained by multi-task learning [21, 22]. Shared bot-
tom hidden layers are used to extract features for both SED
and SSL, and then the layers are split into different branches
to adapt to the specific task. In [22], the conventional recur-
rent neural network (CRNN) is used to model the spectral and
temporal characteristics of the acoustic events, and the SED and
SSL branches are respectively formulated by the feed-forward
networks (FNN). A main challenge of SELD is to deal with the
overlapping cases in which sources from different DOAs co-
exist, and the features of different sources collapse with each
other. Although the problem can be alleviated by adopting
an active source counter [23], or performing data augmenta-
tion [24–27], simply performing data-driven supervised train-
ing from the overlapped features has limited flexibility to make
the network learn to separate these features effectively.

In this paper, the conventional microphone array signal pro-
cessing is leveraged to generate comprehensive representations
for both SED and SSL, and a new method based on multiple di-
rection of arrival (DOA) beamforming and multi-task learning
is proposed. The proposed method exploits spectral and spatial
features extracted from signals of multiple beams, which orient
towards different DOAs. The multiple beams give a diversified
description of the acoustic field, and each beam is formed ac-
cording to the estimated steering vector of each DOA. A steer-
ing vector estimation method based on the cross-power spec-
trum (CPS) and signal presence probability (SPP) is proposed.
We design two separate DNNs for SED and SSL, and a multi-
task learning scheme is exploited for training the SED network,
in which the SSL related tasks act as a regularization. We con-
duct experiments on both development and evaluation sets of
the DCASE2019 SELD task, and the results demonstrate the
effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section 2
we describe the problem. Details of the proposed method will
be presented in Section 3. We evaluate the proposed method in
Section 4 and draw conclusions in Section 5.

2. Problem Description
We consider the SELD task in the DCASE2019 challenge as
a representative of the problem in this paper, in which a 3-
dimensional microphone array is used to capture the signals
of potentially multiple sources. Given a development dataset
which consists of sound event recordings of different types,
DOAs and overlapping patterns, the aim is to jointly estimate
the time interval, azimuth and elevation angles of each sound
event for a new recording from the same array.

With M microphones, the short-time Fourier transform
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(STFT) domain reverberant signal in the m-th microphone is
expressed as

Ym(t, f) =

Q∑
q=1

Hm,q(f)Sq(t, f) + Vm(t, f), (1)

where t and f are the temporal frame and frequency indexes,
respectively, and Q is the maximum number of considered
sources. We denote Sq(t, f) as the STFT-domain signal of the
q-th source in the time-frequency (TF) bin (t, f), and Hm,q(f)
as the frequency-domain room impulse response (RIR) from the
q-th source to the m-th microphone. Vm(t, f) is the noise sig-
nal in the m-th microphone which is assumed to be uncorrelated
with the source signals.

3. Proposed Method
3.1. Multiple DOA Beamforming

The microphone array could perform spatial filtering that en-
hances the target sources and attenuates the inferences, which
is beneficial for the SELD task. Although the networks can be
expected to learn the spatially-filtered signals from raw multi-
channel inputs, optimizing and interpreting the learned interme-
diate representations are not straightforward. It might be pos-
sible to first estimate the DOAs of multiple sources, and then
conduct SED on the signal from each estimated DOA. How-
ever, the error of multi-source DOA estimation could introduce
an extra risk to the robust SED.

In this paper, instead of estimating the signal from the
DOA of each source, we propose to perform multiple DOA
beamforming, which evenly steers the beams towards different
DOAs, such that spatially-distribute sources and noise signals
can be separated. Along with the multichannel raw observa-
tions, the beamformed signals from multiple DOAs provide a
richer description of the acoustic environment, and a specialised
representation of each source. The signals from source-absent
directions can also be regarded as an estimation of the noise
field. When using the beamformed signals from multiple DOAs
for the DNNs, a better SELD performance can be expected.

In the following of this section, the methods of estimating
the steering vector and noise covariance matrix for the beam-
forming as well as the beamformer design will be introduced.

3.1.1. Steering Vector Estimation

With the labelled training data, the steering vector for each DOA
in the training data can be derived without knowing the geome-
try of the microphone array.

From the signal model (1), without loss of generality, we
assume that the q-th source is from azimuth and elevation of
(θ, φ), then the M × 1 steering vector A(θ, φ, f) for (θ, φ) is
defined as

A(θ, φ, f) = [1,
H2,q(f)

H1,q(f)
, ...,

HM,q(f)

H1,q(f)
]T . (2)

Given the multichannel labelled data, for each (θ, φ), a new
multichannel signal can be obtained by concatenating all the
time intervals that consist of only one source and that the source
is from (θ, φ). Since only one source exists in the multichannel
signal, we consistently denote the source index as q without loss
of generality. According to (1), the CPS between the m-th and

the n-th microphones is expressed by

Rmn(f) = E{Ym(t, f)Y ∗
n (t, f)}

= Hm,qH
∗
n,qRss(f) + E{Vm(t, f)V ∗

n (t, f)}, (3)

where Rss(f) is the variance of the source signal. If ignoring
the noise-related term, the m-th element of the steering vector
can be computed based on the CPS as

Am(θ, φ, f) =
Rm1(f)

R11(f)
=

Hm,qH
∗
1,qRss(f)

H1,qH∗
1,qRss(f)

=
Hm,q(f)

H1,q(f)
.

(4)

In practice, the CPS is estimated by recursive smoothing as:

R̂mn(t, f)

= α(t, f)R̂mn(t− 1, f) + [1− α(t, f)]Y ∗
m(t, f)Yn(t, f),

(5)

where 0 < α(t, f) < 1 is a smoothing factor, and R̂mn(f)
is calculated by averaging the CPS over all frames. In order
to reduce the effect of noise in CPS estimation, the smoothing
factor is controlled by the SPP ρ(t, f), as

α(t, f) =

{
1, if ρ(t, f) < κcps;

αy, otherwise,
(6)

where κcps is a threshold determining whether a TF bin is
speech/noise-dominated for CPS estimation, and αy is the
smoothing factor adopted when updating the CPS. It can be seen
that the CPS does not update in noise-dominant TF bins when
ρ(t, f) < κcps and α(t, f) = 1. The SPP is estimated using the
first channel signal based on the method in [28].

3.1.2. Noise Covariance Matrix Estimation

With the SPP, for each utterance, all noise-dominated TF bins
are used to estimate the noise covariance matrix Rvv(f). In the
f -th frequency bin we have

Rvv(f) =
1

T

∑
t

y(t, f)yH(t, f)w(t, f), (7)

where T is the number of frames of the utterance, y(t, f) =
[Y1(t, f), Y2(t, f), ..., YM (t, f)]T is the M × 1 signal vector,
w(t, f) equals to one if ρ(t, f) < κncm and zero otherwise.

3.1.3. Beamformer Design

We utilize multiple MVDR beamformers, which steer the
beams towards P different DOAs, to achieve separation of dif-
ferent source signals. The MVDR beamformer coefficients for
each DOA (θ, φ) is computed according to the estimated steer-
ing vectors and noise covariance matrix.

As is shown in Fig. 1, the DOAs of the beamformers are
chosen as symmetric in elevation and equally spaced in az-
imuth, since sources are usually more distributed over azimuth.

The output signals from the multiple DOA beamforming
are used to extract the features for both SSL and SED, which
will be elaborated later in the next two sections.
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Figure 1: Beam orientations for multiple DOA beamforming.

3.2. SSL

3.2.1. Features

The DOA of the sound source is closely related to the phase
differences and intensity differences between microphones. The
phase difference can be expressed by the phase of the CPS. With
M microphones, all pairwise M(M − 1)/2 CPS are estimated,
then in frame t, a CPS phase feature vector is formed by

r(t) = [r21(t), r31(t), ..., rM(M−1)(t)]
T , (8)

where rmn(t) = [∠Rnm(t, 1), ...,∠Rnm(t, F )], and F is the
number of frequency bins. ∠Rnm(t, f) computes the phase
angle of Rnm(t, f) within the range (−π, π]. Here a small
constant smoothing factor 0.2 is adopted in (5) to increase the
tracking speed of SSL.

The multichannel raw observations and the signals from
multiple DOA beamforming are jointly used to compute the in-
tensity differences. By steering towards different DOAs, the
augmented multiple DOA beamforming outputs give a more
comprehensive sampling of the intensity distribution of the
sound field. In each frame, the intensity of each signal is com-
puted by averaging the power densities over all TF bins within
the [−5, 5] context window. An (M + P )× 1 frame-wise nor-
malized intensity feature vector is obtained by gathering the in-
tensities of all signals, and normalizing the vector such that the
minimum and maximum elements of the vector are 0 and 1,
respectively.

3.2.2. Architectures

We formulate the SSL as a classification problem, and each
class represents a candidate DOA that has appeared in the train-
ing data. Based on the phase and intensity difference features,
the network structure for SSL is depicted in Fig. 2 (a). Since
the CPS phase features span over the whole frequency range,
CNN is adopted to extract a compacted representation. The
compacted feature from CNN and the intensity feature vector
are then concatenated and sent into the gated recurrent units
(GRU) based layers, such that the temporal evolution of the
acoustic events are taken into account. Finally linear layers with
sigmoid activations in the output layer are used to project the
hidden units to the DOA label, under the binary cross-entropy
optimization criterion. Both CNN layers and GRU layers are
composed of several CNN and GRU blocks with architectures
illustrated in the Fig. 2 (c) and (d), respectively.

3.3. Multi-task Learning for SED

3.3.1. Features

We design a separate network for SED. The features for the
SED network consist of two parts: a) the (M + P )-channel

CNN Block 1: Stack CNN Block (c) for poolsize in [8,4,4] 
CNN Block 2: Stack CNN Block (c) for poolsize in [4,2,2]

BGRU

Tanh

Dropout

GRU Block

(d)

GRU Block

Log-Mel 
Feature

Sigmoid 
FC

Phase 
Feature

concatenate

DOA Label

(b)

CNN 
Block 1

CNN 
block 2

Sigmoid 
FC

Linear 
FC

SED Label DOA Value

GRU 
Block

CNN 
Block 1

Phase 
Feature
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Intensity 
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(a)

Maxpooling

Dropout
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(c)

Conv+BN+
ReLu

Conv+BN+
ReLu

Conv+BN+
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Figure 2: Network Architectures for SSL and SED. (a) SSL Net-
work; (b) SED Network; (c) CNN block; (d) GRU block.

Log-Mel features of the multichannel observations as well as
the multiple-DOA beamforming outputs; b) the CPS phase fea-
tures used for the SSL network, which contain the spatial in-
formation. Since the Log-Mel features could indicate the level
difference between channels, the intensity features used for SSL
are excluded. It should be noted that the DOA is not related to
the explicit spectral information of the signal, thus the Log-Mel
features are not exploited for SSL in the previous section.

3.3.2. Architectures

A multi-task learning based network architecture for SED is
shown in Fig. 2 (b). The network has a similar lower-layer
structure with the SSL network, except that the CNN is also
used to extract hidden representations from the Log-Mel fea-
tures. Since the spatially distributed sound events could be tem-
porally overlapped, in order to integrate the spatial discrimina-
tion capability into the network, a triple-task learning scheme
is developed, which forces the network to predict the DOA of
different sources, and serves as regularization for the SED tar-
get. The SED is solved as a classification problem, and both
regression-based and classification-based targets are adopted
for SSL, since empirical studies show that keeping both SSL tar-
gets outperforms utilizing either one of them. The optimization
criteria for DOA regression and SED classification are mean
square error and binary cross-entropy, respectively. The target
for the regression based SSL is a 2Q×1 vector whose elements
are the azimuths and elevations of the Q sources.

We note that when only the SSL network is used for DOA
estimation, there is an ambiguity of assigning the DOA to the
correct source in overlapping scenarios. The regression based
DOA estimation helps to solve the problem by providing an an-
chor point for each source. In addition, although the SSL tar-
gets are included in the SED network, the SSL network is still
needed since the spectral features for the SED network could
impose a negative effect on SSL.

With the SED and SSL networks, the SELD is solved by
a) detecting sound events, b) estimating the DOA of each event
by using the SSL network, with the regression based SSL re-
sults from the SED network as anchor points in the overlapping
cases.
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4. Evaluation
4.1. Data and Experimental Setup

The dataset of the DCASE2019 SELD task, which is recorded
using a four-channel spherical microphone array, is for evalu-
ation. The dataset consists of a 400-utterance development set
and a 100-utterance evaluation set, and the development set is
further divided into four 100-utterance cross-validation splits to
facilitate training. Each utterance is sampled at 48 kHz, and
has a fixed duration of one minute. Eleven types of acoustic
events are included, and up to Q = 2 events appear simultane-
ously. The azimuths and the elevations of the sound sources are
distributed within the range of [−180◦, 170◦] and [−40◦, 40◦],
respectively, all with a 10◦ increment, thus totally 36×9 = 324
DOAs are included in the dataset.

The STFT is conducted with a frame length of 2048 sam-
ples and the hop size is 960 samples, resulting 3000 frames
for each one-minute utterance. Only the lower 512 frequency
bins are used. Eight target directions are chosen for multiple
DOA beamforming, whose two elevations are in {−20◦, 20◦}
and four azimuths are in {−170◦,−80◦, 10◦, 100◦}, respec-
tively. The 96-dimension Log-Mel features for SED are ex-
tracted from the STFT spectrum. In the implementation, we set
κcps = 0.6, κncm = 0.3 and αy = 0.9. The network configura-
tions of the proposed method is summarized in Fig. 2 (e). For
the SED network, the loss functions of SED classification, DOA
regression and DOA classification are combined with a weight
of [1, 50, 50] for joint optimization. In the training stage, the
development data is augmented by speed perturbation with per-
turbation factors of 0.9 and 1.1 to improve the generalization
ability of the trained models.

Four metrics are used for evaluation, which are the F-score
and error rate (ER) for SED, and the DOA error (in degree) and
frame recall (FR) for SSL. An SELD score is calculated based
on the above four metrics to provide an overall evaluation of the
SELD performance, as

SELD score =
ER + DOA Error/180 + (2− F-score − FR)

4

4.2. Results

The proposed method (Triple-task + BF) is compared with the
baseline system [22] and the systems from top two systems of
the DCASE2019 challenge SELD task [23, 29]. To examine
the effectiveness of multiple-DOA beamforming and multi-task
learning, two variations of the proposed method, which respec-
tively use only the multichannel signals for feature extraction
(Triple-task), and exploit only the SED classification & DOA
regression task for the SED network (Dual-task + BF), are taken
for comparison.

The performances of different systems are summarized in
Table 1 and Table 2. The results on the development set show
that the propose method substantially outperforms the baseline
method, and achieves the better SELD score than the top sys-
tems of the DCASE2019 challenge. The proposed method per-
forms best on SED, and yields SSL results comparable with
the methods in [23]. Compared with the ”Triple-task learning”
system, the proposed method achieves a relative reductions of
38.3% on SED ER and 34.5% on DOA error, which clearly
shows that the richer description of the sound field provided by
multiple-DOA beamforming is helpful to both SED and SSL.
In addition, we notice that the triple-task learning scheme per-
forms better than the dual-task learning counterpart, by adopt-
ing a more strict regularization for SED. We should note that al-

Table 1: Performances on the DCASE 2019 SELD dev set

System ER F-score DOA FR SELD score

DCASE Baseline [22] 34.0% 79.9% 28.5◦ 85.4% 21.1%
Method in [23] 14.0% 89.3% 5.7◦ 95.6% 8.1%
Method in [29] 13.0% 92.8% 6.7◦ 90.8% 8.3%

Triple-task 15.4% 87.6% 8.1◦ 86.4% 11.5%
Dual-task + BF 13.0% 92.2% 7.4◦ 89.9% 8.8%
Triple-task + BF 9.5% 94.1% 5.3◦ 93.1% 6.3%

Table 2: Performances on the DCASE 2019 SELD eval set

System ER F-score DOA FR SELD score

DCASE Baseline [22] 28.0% 85.4% 24.6◦ 85.7% 24.5%
Method in [23] 8.0% 94.7% 3.7◦ 96.8% 4.6%
Method in [29] 8.0% 95.5% 5.5◦ 92.2% 5.8%

Triple-task 10.4% 90.7% 6.1◦ 89.7% 8.3%
Dual-task + BF 9.0% 91.9% 5.5◦ 90.9% 7.3%
Triple-task + BF 5.6% 96.9% 3.7◦ 95.5% 3.8%

though separate SSL and SED networks are used, a better SED
could improve the SSL performance by increasing the frame
recall. By analysing the results on the evaluation set, similar
conclusions can be drawn.
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Figure 3: Illustration of the SELD performance of the proposed
system in overlapping conditions.

Fig. 3 displays the SELD performance of the proposed
method on one utterance. We can observe that for almost all
cases the proposed system can yield both accurate and stable
SED and SSL estimates.

5. Conclusions
We propose an SELD method which leveraged the conventional
microphone array signal processing techniques. Multiple-DOA
beamforming is used to achieve signal separation and provides a
diversified description of the sound field. Based on the CPS and
SPP, the steering vector for each DOA is computed and is used
to design beamformers for multiple DOAs. A triple-task learn-
ing scheme is used, which uses both the regression and classifi-
cation based SSL criterion to regularize the SED network. The
effectiveness of the proposed method is demonstrated by the ex-
periments on the dataset of DCASE2019 challenge SELD task.
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