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Abstract
We propose a direction-of-arrival (DOA) estimation technique
which assumes that speech sources are sufficiently sparse and
there is only one active speech source at each time-frequency
(T-F) point. The proposed method estimates the DOA of the ac-
tive speech source at each T-F point. A typical way for DOA
estimation is based on grid-searching for all possible direc-
tions. However, computational cost of grid-searching is pro-
portional to the resolution of search area. Instead of accu-
rate grid-searching, the proposed method adopts rough grid-
searching followed by an iterative parameter optimization based
on Majorization-Minimization (MM) algorithm. We propose
a parameter optimization method which guarantees a mono-
tonical increase of the objective function. Experimental re-
sults show that the proposed method estimates DOAs of speech
sources more accurately than conventional DOA estimation
methods when computational cost of each method is almost the
same.
Index Terms: DOA estimation, sparseness, auxiliary function

1. Introduction
Direction-of-Arrival (DOA) estimation techniques are funda-
mental and enable the tracking of an active speaker in acous-
tic applications such as smart speaker applications, speaker di-
arization systems [1], humanoid robots [2], and so on. DOA
estimation is also useful in speech source separation [3–7]. Typ-
ically, these applications have multiple microphones. Multiple
microphone input signals contain DOA information of the ac-
tive speaker in the form of differences between input signals,
i.e., amplitude ratio, time difference, or phase difference. Gen-
erally speaking, it is possible to perform more accurate DOA
estimation with more microphones. However, accurate DOA
estimation suffers from high computational cost. Thus, one
challenge is to perform accurate DOA estimation with many
microphones with lower computational cost.

For a long time, several DOA estimation techniques have
been studied [8–17]. Early works have been imported from
the wireless communication research field, e.g., multiple sig-
nal classification (MUSIC) [10–12] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [13].
Although original methods output discrete DOA estimates for
narrow-band signals, there are several advanced techniques
which output continuous DOA estimates for broadband signals
[18–20]. Because these methods have not been developed for
speech signals, characteristics of speech sources are not fully
utilized. Steering response power (SRP) based methods [21–23]
are DOA estimation techniques for broad-band signals such as
speech signals. Because the SRP based methods are based on
fixed-beamforming, the resolution is not enough when there are
multiple speech sources.

Sparseness-aware DOA estimation techniques have been
also proposed [24–28]. These techniques fully utilize charac-
teristics of speech sources, i.e., W-disjoint orthogonality [29].

These techniques assume that speech sources are highly sparse
in time-frequency (T-F) domain and there is at most one ac-
tive speech source per each T-F point. In DUET [24], the
DOA of the active speech source at each T-F point is esti-
mated from phase differences between two microphones under
the W-disjoint orthogonality assumption. Then, DOAs of multi-
ple speech sources are estimated by peak-searching a histogram
of phase differences across T-F axes. DUET with two micro-
phones works well under anechoic and noiseless environments.
On the other hand, DOA estimation accuracy degrades under
reverberant and noisy environments. Althouth DOA estimation
accuracy will be higher with a longer distance between two mi-
crophones, there is an upper limit on the allowable distance be-
tween two microphones due to the spatial aliasing problem [26].

There are several sparseness-aware DOA estimation tech-
niques which overcome the spatial aliasing problem by utiliz-
ing more than three microphones [3, 26, 30]. Modified Delay-
and-Sum Beamformer (MDSBF) [3] estimated the DOA of
the active speech source at each time-frequency point by grid-
searching for all possible directions. Because computational
cost of grid-searching is proportional to the resolution of search
area, fine grid-searching is typically problematic. Instead of fine
grid-searching, stepwise phase difference restoration (SPIRE)
methods [26, 30] optimize an approximated objective function
with the Taylor expansion [30]. However, the optimization step
is heuristically derived and there is less theoretical justification.

In this paper, we propose a sparseness-aware DOA esti-
mation method which estimates the DOA of the active speech
source at each T-F point without fine grid-searching. The
DOA of the active speech source is estimated with rough grid-
searching followed by an iterative parameter optimization. The
objective function in the parameter optimization is based on the
objective function of the MDSBF. Because a closed-form solu-
tion cannot be achieved, a quadratic surrogate function is de-
rived based on an inequality originally proposed in the context
of time delay estimation [31]. A solution which optimizes the
proposed surrogate function can be obtained with lower com-
putational cost than grid-searching. It is also guaranteed that
the proposed method increases the objective function mono-
tonically based on the Majorization-Minimization (MM) algo-
rithm [32]. Experimental results show that the proposed method
can perform more accurate DOA estimation than conventional
methods with similar computational cost under reverberant and
noisy environments.

2. Problem statement
2.1. Signal modeling

A recorded microphone input signal is transformed from time-
domain into a T-F domain via short time Fourier transform. In
the T-F domain, a multi-channel microphone input signal xlk ∈
CNm (l is the frame index, k is the frequency index, and Nm is
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the number of the microphones) is modeled as follows:

xlk =

Ns∑
i=1

silkaik + nlk, (1)

where Ns is the number of the speech sources, silk is the
i-th speech source signal, aik is the steering vector of the
i-th speech source, and nlk is the background noise signal.
The steering vector aik contains DOA information of the i-
th speaker and it is parameterized with the DOA of the speech
source as aik = aθi,ϕi,k,

where θi and ϕi are the azimuth and elevation of the ith
speech source, respectively. The active speech source and
the noise signal are assumed to be uncorrelated with each
other. It is also assumed that the noise signal in each mi-
crophone is uncorrelated with each other and it has the same
power as E

[
nlkn

H
lk

]
= P (n)I, where H is the Hermitian

transpose of a matrix/vector, E is the expectation operator, I
is the Nm-dimensional identity matrix, and P (n) is the ex-
pected value of the noise power. The objective is to estimate
{θi, ϕi}1≤i≤Ns from the observed microphone input signal
{xlk}1≤l≤L,1≤k≤K .

2.2. W-disjoint orthogonality

In [29], it is assumed that speech sources are sufficiently sparse
and there is at most one active speech source per each T-F point
(W-disjoint orthogonality). Under the W-disjoint orthogonality
assumption, the mixture is approximated as follows:

xlk ≈ slkalk + nlk, (2)

where slk and alk are redefined as the source signal of the active
speech source and the steering vector at the l-th frame and the
k-th frequency, respectively. Let (θlk, ϕlk) be the DOA of the
active speech source at the l-th frame and the k-th frequency as
well. DOA histogram based methods [3,26,30] estimate DOAs
of all speech sources as follows:

1. Estimate θlk, ϕlk from the microphone input signal xlk

2. DOAs of multiple speech sources are estimated by peak-
searching a histogram of {θlk, ϕlk}1≤l≤L,1≤k≤K across
T-F axes.

2.3. Conventional approach of DOA estimation at each
time-frequency point

Modified Delay and Sum Beamforming (MDSBF) [3] estimates
alk by using grid-searching for all possible directions. Let
bθ,ϕ,k be the normalized steering vector of a possible direction
(θ, ϕ), i.e., ∥bθ,ϕ,k∥22= 1. Square of the inner product between
bk and xlk can be calculated in the form of the expected value
as follows:

Pθ,ϕ,l,k = E

[∣∣∣bHθ,ϕ,kxlk

∣∣∣2] = Ps

∣∣∣bHθ,ϕ,kalk

∣∣∣2 + Pn, (3)

where Ps is the expected value of the signal power. It is impor-
tant to note that Pθ,ϕ,l,k is maximized when bθ,ϕ,k = alk. This
means that we can estimate the DOA of the active speech source
(θlk, ϕlk) by maximizing Pθ,ϕ,l,k w.r.t. (θ, ϕ). Unfortunately,
a closed-form solution which maximizes Pθ,ϕ,l,k cannot be ob-
tained. Instead, MDSBF estimates (θlk, ϕlk) via grid-searching
for all possible directions with an approximation of the expected
value as follows:

(θlk, ϕlk) = argmax
(θ,ϕ)∈Ω

Pθ,ϕ,l,k ≈ argmax
(θ,ϕ)∈Ω

∣∣∣bHθ,ϕ,kxlk

∣∣∣2 , (4)

where Ω is the set of all possible directions. The steering vector
bθ,ϕ,k is modeled as a function of θ, ϕ with the far-field assump-
tion as follows:

bθ,ϕ,k,m =
1√
Nm

exp

(
j2πfk

qT
θ,ϕdm

c

)
, (5)

where bθ,ϕ,k,m is the m-th element of bθ,ϕ,k, j is the imag-
inary unit, fk is the frequency [Hz] of the k-th frequency
bin, c is the sound speed [m/s], dm is the three-dimensional
position vector of the m-th microphone, T is the transpose
operator of a matrix/vector, and qθ,ϕ is the position vec-
tor of a virtual speech source which comes from the (θ, ϕ)
direction on the unit sphere, which is defined as qθ,ϕ =(
cos θ cosϕ sin θ cosϕ sinϕ

)T . The MDSBF framework
is quite solid, but one problem is that its computational cost is
proportional to the number of grid points |Ω|. Thus, the com-
putational cost is typically problematic when the resolution is
precise.

3. Proposed method
The proposed method avoids the fine grid-searching for all pos-
sible directions by incorporating an iterative parameter opti-
mization technique based on Majorization-Minimization (MM)
algorithm [32]. Instead of the original objective function, the
parameter is updated so as to maximize the derived surrogate
function.

3.1. Derivation of objective function

The objective function of the proposed method is based on the
objective function of the MDSBF. The objective function F is
derived under the assumption that all microphone input signals
have the same amplitude at each time-frequency point as fol-
lows:

(6)F(θlk, ϕlk,xlk) =
∣∣∣bHθlk,ϕlk,kxlk

∣∣∣2 ,
where xlkm is the normalized input vector defined as xlkm

|xlkm| =

exp (jσlkm) and σlkm is the phase component of the m-th mi-
crophone input signal. The inner product between bθlk,ϕlk,k

and xlk can be expanded with (5) as follows:

bHθlk,ϕlk,kxlk =
1√
Nm

Nm∑
m=1

exp
(
jσlkm − jαkq

T
θlk,ϕlk

dm

)
,

(7)

where αk = 2πfk
c

. Optimization of F at each time-frequency
point w.r.t. qθlk,ϕlk under the constraint that ∥qθlk,ϕlk∥

2
2= 1

is simpler than optimization of F w.r.t. (θlk, ϕlk) and these
two optimizations are equivalent. Thus, the objective function
F is rewritten as a function of qθlk,ϕlk . The objective function
F(qθlk,ϕlk ,xlk) can be also expanded as follows:

F(qθlk,ϕlk ,xlk) =

Nm∑
m=1

Nm∑
n=1

exp
(
jσlkmn − jαkq

T
θlk,ϕlk

dmn

)
Nm

= 1 +

Nm∑
m=1

Nm∑
n=m+1

2 cos
(
σlkmn − αkq

T
θlk,ϕlk

dmn

)
Nm

,

(8)

where dmn = dm − dn and σlkmn = σlkm − σlkn. Because
it is impossible to optimize F(qθlk,ϕlk ,xlk) w.r.t. qθlk,ϕlk in
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a closed-form manner, the proposed method optimizes a sur-
rogate function of F(qθlk,ϕlk ) instead. An initial value of
qθlk,ϕlk is estimated by rough grid-searching based on MDSBF.

3.2. Derivation of surrogate function

In the MM algorithm [32], it is ensured that the objection func-
tion F(qθlk,ϕlk ) is monotonically increasing by iteratively op-
timizing a surrogate function F+(qθlk,ϕlk , r) which fulfills the
following equations:

F(qθlk,ϕlk ) ≥ F+(qθlk,ϕlk , r) (9)

F(qθlk,ϕlk ) = max
r

F+(qθlk,ϕlk , r), (10)

where r is an auxiliary variable. A surrogate function for
cos
(
σlkmn − αkq

T
θlk,ϕlk

dmn

)
is derived from an inequality

proposed for sub-sample time delay estimation [31] as follows:

cos
(
σlkmn − αkq

T
θlk,ϕlk

dmn

)
≥

− sin (ylkmn) (σlkmn − αkq
T
θlk,ϕlk

dmn + 2zlkmn)
2

2ylkmn

+ C,

(11)

where C is a term that is not a function of qθlk,ϕlk . The auxil-
iary variable r is {ylkmn, zlkp} (ylkmn ∈ R1 and zlkmn ∈ Z1).
A surrogate function F+(qθlk,ϕlk , r) can be obtained as fol-
lows:

F+(qθlk,ϕlk , r)

=
∑
p

− sin (ylkp)
(
σlkp − αkq

T
θlk,ϕlk

dp + 2zlkpπ
)2

Nmylkp
+C,

(12)
where p = (m,n) is the microphone pair index and zlkp is set
to

zlkp = argmin
z∈Z

∣∣∣σlkp − αkq
T
θlk,ϕlk

dp + 2zπ
∣∣∣ . (13)

F(qθlk,ϕlk ) is equal to F+(qθlk,ϕlk , r) if and only if the fol-
lowing equation is satisfied:

ylkmn = σlkmn − αkq
T
θlk,ϕlk

dmn + 2zlkmn. (14)

3.3. Parameter optimization

Minimization of the quadratic surrogate function
F+(qθlk,ϕlk , r) w.r.t. qθlk,ϕlk under the constraint
∥qθlk,ϕlk∥

2
2= 1 is a generalized trust region subproblem [33].

It can be tackled by the method of Lagrange multipliers.
G(qθlk,ϕlk , r, λlk) = F+(qθlk,ϕlk , r)−λlk

(
∥qθlk,ϕlk∥

2
2−1

)
is optimized by setting the derivative of G to 0 as follows:

qθlk,ϕlk = (Dlk + λlkI)
−1 wlk (15)

where Dlk = α2
k

∑
p

sin(ylkp)dpd
T
p

ylkp
and wlk =

αk

∑
p

sin(ylkp)(σlkp+2zlkpπ)dp

ylkp
. λlk should satisfy the

following equation from the constraint ∥qθlk,ϕlk∥
2
2= 1:

wT
lk (Dlk + λlkI)

−T (Dlk + λlkI)
−1 wlk = 1. (16)

The proposed method utilizes a bisection method to solve λlk

similar to least-squares (LS) approaches based on squared range

Table 1: Simulation configurations

T60 [s] Max order Absorption
0.36 17 0.35
0.70 34 0.2

observations (SR-LS) [34]. Because (16) includes matrix inver-
sion, a simplified equation without matrix inversion is derived.
Eigenvalue decomposition of Dlk can be obtained as Dlk =
VlkWlkV

T
lk , where Vlk is a matrix which contains eigenvec-

tors and Wlk is a diagonal matrix which contains eigenvalues
{Wlki}i=1,2,3 in its diagonal elements. (16) can be expanded
as follows:

(Dlk + λlkI)
−1 = Plk (Wlk + λlkI)

−1 P T
lk . (17)

Finally, we can obtain the following simplified equation:

a2
1

(λlk +Wlk1)2
+

a2
2

(λlk +Wlk2)2
+

a2
3

(λlk +Wlk3)2
= 1,

(18)
where ai is the i-th element of the vector P T

lkwlk. We
can search for λlk efficiently without matrix inversion
based on (18). The search area of λlk is limited in
(−mini Wlki,maxi

√
N |ai| − Wlki) under the assumption

that the matrix Dlk + λlkI is a positive-definite matrix.

3.4. Summary of proposed method

The proposed method is summarized as follows:

1. Initilize qθlk,ϕlk by rough grid-searching based on
MDSBF

2. Update parameters in an iterative manner

• Update zlkp based on (13)

• Update ylkp based on (14)

• Optimize λlk based on bisection search with (18)

• Update qθlk,ϕlk based on (15)

3. Extract θlk, ϕlk from qθlk,ϕlk

4. Make a DOA histogram of {θlk, ϕlk}1≤l≤L,1≤k≤K

across T-F axes

5. DOAs of active sources are estimated by peak-searching
the DOA histogram

3.5. Relation to prior work

The proposed surrogate function is similar to the objective func-
tion of SPIRE [30]. The object function of SPIRE is derived by
using a Taylor expansion which is equivalent to sin ylkp

ylkp
= 1 in

(12). In the SPIRE, microphone pairs which are utilized in each
iteration are determined manually. On the contrary, the pro-
posed method determines a weight for each microphone pair
sin ylkp

ylkp
automatically so as to increase the objective function

monotonically. Thus, the proposed method is interpreted as an
extension of SPIRE with the MM algorithm. In this context, we
call the proposed method SPIRE-MM.

4. Experiment
4.1. Setup

DOA estimation performance of the proposed method was eval-
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Table 2: Evaluation results
RMSE [degrees] Accuracy [%]

T60 : 0.36 [s]/0.70 [s] T60 : 0.36 [s]/0.70 [s]
Approach RTF Ns = 1 2 3 4 1 2 3 4
MDSBF (full) [3] 26.48 0.66/0.66 0.69/0.71 0.64/0.72 0.72/0.78 86.0/84.0 85.0/80.5 83.0/73.0 80.2/68.2
SRP-PHAT [21] 1.50 0.83/1.15 1.77/2.22 2.53/3.16 3.47/4.23 60.0/43.0 23.5/20.5 13.0/11.0 8.5/7.5
MUSIC [10] 3.06 0.67/0.75 0.92/1.18 1.32/2.28 1.50/2.25 83.0/73.0 55.5/41.0 38.3/26.7 35.5/27.5
MDSBF (half) 13.21 0.96/0.96 0.90/0.92 0.94/0.95 0.96/0.99 52.0/52.0 57.5/56.0 57.0/54.7 54.8/51.0
MDSBF (quarter) 6.60 1.21/1.21 1.28/1.28 1.28/1.28 1.38/1.38 32.0/32.0 31.5/31.5 29.3/29.0 28.5/28.5

SPIRE-MM 1 1.46 0.82/0.94 1.01/1.38 1.12/1.69 1.59/2.61 63.0/53.0 50.0/36.0 44.0/29.3 31.0/22.5
SPIRE-MM 2 2.99 0.70/0.77 0.77/0.84 0.70/0.91 0.81/1.07 75.0/66.0 76.0/65.0 76.3/56.3 66.2/47.5
SPIRE-MM 3 11.02 0.68/0.72 0.71/0.76 0.68/0.78 0.76/0.88 81.0/78.0 80.5/75.0 77.7/69.7 73.0/59.5
SPIRE-MM 4 6.46 0.68/0.70 0.72/0.75 0.69/0.77 0.75/0.93 83.0/78.0 83.0/74.0 76.3/67.7 74.5/55.5
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Figure 1: Experimental results when T60 = 0.36 [s] and Ns =
2: Each point represents an evaluation result of median value of
RMSE over 100 mixtures with a specific number of initial grid
points Nr

Sphinx database [37]. Pyroomacoustics simulates rever-
berant mixtures in a 10 × 10 × 10 m room with two config-
urations shown in Table 1. The number of the speech sources
Ns was set to 1, 2, 3, and 4. 100 reverberant mixtures were
simulated for each condition. Sampling rate was 16000 Hz.
Signal to Noise Ratio (SNR) between speech sources and back-
ground noise was set to 10 dB. The Pyramic microphone ar-
ray [38] geometry (Nm = 48) was utilized. Frame size was
256. Frame shift was 128. The total number of frequency bins
was 127. For DOA estimation, frequency bins from the 6-th
bin to the 60-th bin were used. Real-Time Factor (RTF) was
measured by using a mixture with 16.63 [s] duration. Distance
between microphones and talkers was set to 3m. For evaluation
of computational cost, a server with Intel Xeon CPU E5-2630
v4 2.20GHz CPU and 132 GB RAM was used. In the proposed
method, we limit the number of the microphone pairs (m,n) as
m ∈ {1 · · ·Nm} and n ∈ {m+ 1 · · ·min(m+Np, Nm)}.

4.2. Results

We evaluated median value of Root Mean Square Error (RMSE)
[degrees] between the estimated DOA and the oracle one and
percentage of estimation results within 1 degree error (Accu-
racy). The grid size in MDSBF (full), SRP-PHAT, and MUSIC
was 180 × 90. MDSBF (full) is the upper-bound of the pro-
posed method. The grid size in MDSBF (half) was the half
of that in MDSBF (full). The grid size in MDSBF (quarter)
was the quarter of that in MDSBF (full). The grid size for

peak-searching the output histogram was set to 180 × 90. In
the proposed method, the grid size for initial grid-searching Nr

was set to a lower value. The number of MM iterations Ni
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Figure 2: Experimental results when T60 = 0.70 [s] and Ns =
2

was set to 1, 2, 5. In SPIRE-MM 1,2,3,4, we adjusted Np, Ni,
and Nr to match the RTFs of SRP-PHAT, MUSIC, MDSBF
(half), and MDSBF (quarter), respectively. Estimation results
were shown in Table 2. The second best result was bolded. It
is shown that the proposed SPIRE-MM outperformed the con-
ventional methods whose RTFs are almost the same. Effective-
ness of the proposed iterative parameter update was also eval-
uated in Fig. 1 and Fig. 2 with various number of initial grid
points Nr ∈ {162, 450, 648, 900, 1296, 1800, 2592, 4050}. It
is shown that RMSE is decreasing by increasing the number of
the iterations Ni when the RTF is almost the same. Thus, it can
be said that the proposed iterative parameter optimization based
on the MM algorithm is effective.

5. Conclusions
We proposed a sparseness-aware DOA estimation method. The
proposed method estimates the DOA of the active speech source
at each frequency point in an iterative way. Monotonical in-
crease of the objective function is guaranteed in the proposed
method. Experimental results showed that the proposed method
outperformed the conventional method when the real-time fac-
tor (RTF) is almost the same. It was also shown that DOA es-
timation performance increases with the proposed iterative pa-
rameter optimization.
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uated by using Pyroomacoustics [35]. Anechoic speech
sources were extracted from CMU ARCTIC Concat15 dataset
[36] which concatenates utterances extracted from the CMU
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