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Abstract

Transformer, a state-of-the-art neural network architecture,
has been used successfully for different sequence-to-sequence
transformation tasks. This model architecture disperses the
attention distribution over entire input to learn long-term de-
pendencies, which is important for some sequence-to-sequence
tasks, such as neural machine translation and text summariza-
tion. However, automatic speech recognition (ASR) has a char-
acteristic to have monotonic alignment between text output and
speech input. Techniques like Connectionist Temporal Classifi-
cation (CTC), RNN Transducer (RNN-T) and Recurrent Neural
Aligner (RNA) build on top of this monotonic alignment and
use local encoded speech representations for corresponding to-
ken prediction. In this paper, we present an effective cross at-
tention biasing technique in transformer that takes monotonic
alignment between text output and speech input into consider-
ation by making use of cross attention weights. Specifically,
a Gaussian mask is applied on cross attention weights to limit
the input speech context range locally given alignment informa-
tion. We further introduce a regularizer for alignment regular-
ization. Experiments on LibriSpeech dataset find that our pro-
posed model can obtain improved output-input alignment for
ASR, and yields 14.5%-25.0% relative word error rate (WER)
reductions.

Index Terms: speech recognition, end-to-end, transformer,
alignment, cross attention

1. Introduction

Automatic speech recognition (ASR) has made great progress
in recent years. From alignment-free CTC models [1, 2, 3], to
encoder-decoder attentional models [4, 5, 6], to jointly trained
CTC and attention-based models [7, 8, 9], end-to-end models
have demonstrated great potential over traditional GMM-HMM
and hybrid DNN-HMM models [10, 11]. Recently, the Trans-
former model [12] has been successfully introduced for ASR.
[13] first used the Transformer in speech recognition and named
the model as speech-transformer. [14] further designed a down-
sampling method used in the Transformer for speech recog-
nition task. As an end-to-end model architecture, the Trans-
former not only combines acoustic model, pronunciation dic-
tionary and language model in a unified neural framework, it is
also well known for its fast computation speed [13] and ability
to learn long range relationships [15].

Transformer model relies on self-attention and cross atten-
tion in the encoder and decoder to capture direct pairwise rela-
tionships in the respective contexts. Its cross attention from de-
coder hidden states to encoder hidden states is the same as the
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cross attention in the long short-term memory (LSTM) based
encoder-decoder model, i.e. to attend to the entire input utter-
ances and obtain corresponding attention weights for decoding.
This model architecture can disperse the attention distribution
over the entire input, which is important for some sequence-
to-sequence tasks, such as neural machine translation (NMT)
and text summarization. However, when it comes to ASR, the
same architecture may not work well, as monotonic alignment
between text output and speech input is a characteristic of ASR,
and has been studied using various techniques. CTC [16] and its
extensions (RNN-T [1], RNA [17]) used monotonic alignment
position to locate the local encoder representations for current
token prediction. [18] proposed using the CTC output as align-
ment reference by getting both the first position of consecu-
tive outputs and any non-consecutive output position before the
blank label. However, their alignment depends heavily on CTC
output accuracy, and the result is not comparable with state-of-
the-art end-to-end speech recognition results. The recently pro-
posed Continuous Integrate-and-Fire model [19] followed the
integrate-and-fire neural model to integrate along input speech
frames and triggered an output once an alignment boundary is
found. Their soft and monotonic alignment is affected by back-
ground noise greatly, since noise term will influence the inte-
gration and alignment boundary location, affecting the final ac-
curacy.

In order to achieve better alignments between output and
input for speech recognition under the sequence-to-sequence
framework, in this paper we propose a straightforward yet effec-
tive cross attention biasing technique for the Transformer model
that takes output-input alignments into consideration, without
referencing CTC or adding additional parameters on encoder
hidden states. We take advantage of cross attention weights
as a reference of output-input alignment to be used in current
cross attention computation. In particular, we apply a Gaus-
sian mask on attention weights centered at the alignment posi-
tion. Additionally, we introduce a regularizer which regularizes
alignment between output and input to encourage monotonic-
ity. Since lower layers of the Transformer capture more acous-
tic and local information [20], we apply our cross attention bi-
asing on lower layers of the Transformer model, and leave the
cross attention at higher layers to attend to entire speech input
to capture global information. Our results on LibriSpeech 100h
dataset show that our proposed model yields 14.5%-25.0% rel-
ative word error rate (WER) reductions.

2. Model architecture

In this section, we will introduce our proposed model by first
reviewing the speech transformer model, and then detailing our
proposed approach.
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2.1. Speech transformer

Transformer was proposed by [12] as an encoder-decoder se-
quence transduction model. Here we summarize a few key com-
ponents of the transformer model. For full details, please refer
to [12]. Transformer encoder has N, repeated building blocks
and transformer decoder has Ny repeated building blocks, as
shown in Figure 1. It replaces the commonly used recurrent
layers with self-attention layers. Self-attention network is used
in both encoder and decoder, to learn the input representation by
scaled dot-product attention. The multiple self-attention outputs
are concatenated together to learn different subspaces concur-
rently, which is called multi-head attention:

T

QK
Vi

MultiHead(Q, K,V) = Concat(head, ..., headh)Wo
2
head; = Attention(QWE, KW/, VW) 3)

where h is the number of attention heads, WZQ € R¥moderxdq
W'LK c Rdmodel Xdk’ W'LV c Rd'm,odchdU’ Wo =
RMvXdmodel are respective weight matrices, and dy = dg =
dy = dmodet/h in this paper.

After the multi-head attention network, there is a position-
wise feedforward network with rectified linear unit (ReLU) ac-
tivation:

Attention(Q, K, V) = softmax(

WV ey

FFN(z) = max(0,2W1 + b1)Wa + by “4)

where Wy € R¥modetXdif )/, € R4 > 4model and the biases
b, € Rdff, by € Rd"’"’dd .

For decoder, there is a cross attention network between
the multi-head self-attention network and feedforward network,
whose structure is the same as the multi-head attention, except
that the K and V' come from the encoder while () comes from
the decoder. This allows the decoder to focus on different part
of input speech frames in encoder for every decoding step [21].
Layer normalization and residual connection are applied before
and after each module introduced above. To prevent the de-
coder from looking at subsequent text behind current position,
a masking is applied to the future tokens.

2.2. Cross attention with alignment

In this section, we introduce our proposed Transformer model
for speech recognition with modified cross attention that con-
siders monotonicity between text output and speech input. The
alignment information is beneficial for the decoder to focus
on the relevant input speech frames, especially at lower layers
where the model captures more local than global information
[20]. This adjustment is carried out in both training and infer-
ence stages.

2.2.1. Alignment

Our objective is to find alignment between text output and
speech input. Inspired by [22], which used recurrent neural net-
work and proposed location-based attention mechanism com-
puted by previous attention weights, we take advantage of cur-
rent cross attention weights to locate the alignment position in
the input and apply it on the transformer model. Given that
a speech input and its corresponding text transcript should be
most similar in the embedding space, we propose to take the
position with the maximum cross attention weight as the input
alignment for the current decoder input.
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Figure 1: Speech Transformer model architecture.
For any text hidden vector y; in the decoder, the cross

attention weight a;; to the encoder final output z; in X
(T1y ..., Tp) is:

(W) (@, W)
Vi

where WO, W € RémodetXdk are the linear transformation
matrices. xy, aligns with y; if:

) (&)

aij = softmax(

Qi = Qi Vj S (1,n),j 75 k (6)
¢ and k are the aligned output and input positions respectively,
which will be used for cross attention computation.

2.2.2. Cross attention biasing

Attention biasing was proposed in [15] for improving the per-
formance of self-attention acoustic model. Different from it,
we propose to use attention biasing on the relevant part of en-
coder output under the cross attention framework. In particular,
we add a Gaussian mask to the attention weights centered at the
alignment position of encoder output which matches current de-
coder input most, which we name as soft attention biasing. The
mask keeps the attention weight at the alignment position, and
the weight is gradually diminished when moving away from the
position. The attention weight is defined as:

(W) (z,WH)"
Vi

where M;; is the attention mask defined in the following way:

—( — k)
Mi; = 202

ai; = softmax( + M;;) @)
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(a) Before soft attention biasing
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(b) After soft attention biasing

Figure 2: Cross attention weight diagram before and after ap-
plying soft attention biasing. X = (z1,...,xs) are encoder
final layer output vectors. Text outputs consist of sub-words ”’f
ir st”. Shade of gray in each square represents cross atten-
tion weight between each encoder and decoder vector. Darker
shade means higher weight value. Squares that arrows point to
represent the aligned positions identified using Eq. 6.

where y; aligns with xj, and o2 is a learnable Gaussian vari-
ance parameter such that the aligned position has more atten-
tion weight value. Figure 2 shows the cross attention weights
between text sub-words and encoder final layer output vectors
before and after applying soft attention biasing. Besides soft
attention biasing, we also try to mask all attention weights on
the right hand side of alignment position (set them to 0) while
keeping the left hand side attention weights, which we call it
hard attention biasing. We will compare these two attention bi-
asing techniques in our experiments.

2.2.3. Algorithmic details

Firstly, we add n look-ahead frames after alignment position.
This is motivated by the benefit of adding some look-ahead
frames after alignment position for location-aware attention in
[18]. Eq. 8 in this case becomes:

—( = (k+n))?
202

Secondly, we apply cross attention biasing at lower layers
of the decoder as Eq. 7 to capture local information. This is
motivated by [20] that the model captures more local than global
information at lower layers. At higher layers where more global
information is learned by the model, we remove the bias term
and follow original cross attention model as Eq. 5 to attend to
larger range of speech frames. In this way, our proposed method
could fuse the local and global span of information. This is
different from the hybrid global and local attention proposed in
[23], which used encoder hidden states as a gating mechanism
to integrate global and local attention in self-attention network.

M;; = &)

2.3. Monotonic alignment regularization

Alignment positions between the output and input should be
strictly monotonic in the input sequence for speech recognition.
In order to regularize alignment using the technique above, we
propose a regularizer term to achieve monotonicity. For an en-
coder output X = (x1,...,%n) and a text transcription embed-
ding from the decoder Y = (y1, ..., ym ), we define the follow-
ing misalignment loss as the regularization term:

m

lossmisalign = Z U(kl — kl+1)

=1

(10)
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Table 1: WER results of end-to-end speech recognition models
on LibriSpeech 100h

Model Test_clean Test_other
Baseline transformer 12.0 29.7
Encoder-Decoder-Attention [24] 14.7 40.8
Encoder-Decoder-Attention

(with data augmentation) [25] 15.1 -

LAS Model [26] 12.9 35.5

where o is the sigmoid function and k; is the position in X that
gy, aligns to. In other words, we want the alignment of y; to
be in front (before) of the alignment of 4;41 in X. Under the
CTC and attention hybrid multi-task learning framework, the
proposed training criterion for improving the monotonic align-
ment between text output and speech input becomes:

loss = axlosscte + (1 — ) ¥10SSqtt + B *108Smisatign (11)
losscte = —InP(y|x) (12)

lossai = ZlnP(yulx,ym_l)

u

13)
where « is the ratio of CTC model loss in hybrid model.

3. Experiments
3.1. Experimental setup

We use ESPnet end-to-end speech recognition toolkit and Lib-
riSpeech corpus for our experiments [27, 28]. The training
dataset is 100 hour clean training data uttered by 251 speak-
ers, and the development and test dataset are the default Lib-
riSpeech development and test dataset, where each is around 5
hours and contains 2600 to 3000 utterances. LibriSpeech con-
sists of 16kHz read English speech from audiobooks [28]. In-
put features are generated by 80-dimensional filterbanks with
pitch on each frame, with a window size of 25ms shifted every
10ms. We exclude utterances longer than 3000 frames or 400
characters to keep memory manageable. We adopt a multi-task
learning mechanism and joint decoding of CTC and attention
[29], where output takes 30% of CTC output probability and
70% of attention output probability. S in Eq. 11 is chosen as
1.0 from preliminary experiments. The convolutional frontend
before transformer encoder is two 2D convolutional neural net-
work layers [13] with filter size (3,2), each followed by a ReLU
activation. In the transformer model, the attention dimension
dmodel 18 256, and feedforward network hidden state dimension
dyy is 2048, the number of attention heads is 4, the number of
encoder layers N, is 12, the number of decoder layers Ny is 6,
the attention dropout rate is 0.0, the initial value of learning rate
is 5.0, and the encoder and decoder dropout rate is 0.1. We use
unigram sub-word algorithm with the vocabulary size capped to
be 5000 [30].

3.2. Experimental results
3.2.1. Baseline system

We use the default settings of ESPnet transformer model as our
baseline [27, 31]. The baseline model result is comparable with
other published end-to-end speech recognition models [24, 25,
26], as shown in Table 1.
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Figure 4: Gaussian mask standard deviation for each of atten-
tion head at each training epoch.

3.2.2. The proposed system

First, we explore the number of look-ahead frames included as
mentioned earlier using two attention biasing techniques. The
standard deviation o in the Gaussian mask is initialized to 100
as in [15]. In both cases, we apply attention biasing on all the
decoder layers. The results are shown in Figure 3. We can see
that look-ahead frame does not affect much for soft attention
biasing. This is because we employ a Gaussian mask with large
learnable variance, so slight movement of Gaussian center po-
sition will have less impact. Figure 4 shows how the Gaussian
mask standard deviation of each head evolves during training.
However for hard attention biasing, since it depends entirely on
the correctness of alignment position identified, careful tuning
of number of look-ahead frames is required. Only when number
of look-ahead frames is more than 5 in this case, hard attention
biasing has comparable performance with soft attention biasing.
To save the effort of tuning parameter, we employ soft attention
biasing with 5 look-ahead frames in the following experiments.

Second, the number of decoder layers applying cross atten-
tion biasing is explored. The experimental results are listed in
Table 2. We can see that using cross attention biasing at the
lower layers (layer 1-3) can get slightly better results than at
higher layers (layer 4-6). It is consistent with the previous re-
sults, that is, lower layers capture more local information, while
higher layers capture more global information [20].

We investigate the effect of all three techniques used in our
proposed method, that includes adding look-ahead frames, ap-
plying on lower layers of the decoder (layer 1-3), and mono-
tonic alignment regularization. Table 3 lists the experimen-
tal results. We also test any two combination out of the three
techniques by specifying missing which technique, e.g. w/o
look-ahead frames refers to using the techniques of applying
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Table 2: WER results of applying cross attention biasing on
different layers on LibriSpeech 100h

Decoder layers applied Test_clean Test_other
baseline 12.0 29.7
layer 1-3 9.4 259
layer 4-6 9.5 26.2
layer 1-6 9.4 26.0

Table 3: WER results of cross attention biasing and alignment
regularization on LibriSpeech 100h

Model Test_clean  Test_other
baseline 12.0 29.7
our proposed method 9.0 254
w/o look-ahead frames 9.3 25.9
w/o applying on layer 1-3 9.4 26.0
w/o alignment regularization 94 259
hybrid global+local model [23] 9.4 25.9

on lower layers of the decoder and monotonic alignment regu-
larization, and so on for the other two. It can be seen that these
three techniques are equally important, as missing any one of
them results in similar performance deterioration (row 3-5). For
the last technique to encourage monotonic alignment between
text output and speech input, we have tried to equally segment
the input speech length based on output text length and then find
alignment from corresponding speech frames to ensure mono-
tonicity, but the results cannot surpass our alignment regular-
ization method. Altogether, combination of all three techniques
achieves our best result.

The last row of Table 3 lists the hybrid global and local at-
tention approach [23]. Our model has 1.9%-4.3% relative WER
reductions compared with [23]. Our model applies cross atten-
tion biasing on lower three decoder layers, and the rest decoder
layers use standard cross attention. While in [23], it mixes two
mechanism together with a gate derived from encoder hidden
states. It is questionable on how much encoder hidden states
can tell the importance of global versus local attention.

4. Conclusions

In this paper, we introduce an effective cross attention biasing
technique through making use of cross attention weights. In
order to constrain the monotonic alignment attribute between
text output and speech input, we propose a regularizer term to
achieve monotonicity. Under the cross attention framework, at-
tention biasing limits the speech context range given alignment
information. Experiments on LibriSpeech dataset denoted that
our proposed model is effective. Comparing with the baseline
system, there are 14.5%-25.0% relative WER reductions. Com-
paring with the hybrid global and local attention method, there
are 1.9%-4.3% relative WER reductions. Obtaining output-
input alignment in our proposed model relies on accurate encod-
ing of speech input. In the future, we are interested to improve
speech input encoding in self-attention network, and its integra-
tion with our cross attention with alignment method. Besides,
we would explore identifying misalignment globally over entire
utterances.
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