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Abstract
Transformer model has made great progress in speech recogni-
tion. However, compared with models with iterative computa-
tion, transformer model has fixed encoder and decoder depth,
thus losing the recurrent inductive bias. Besides, finding the
optimal number of layers involves trial-and-error attempts. In
this paper, the universal speech transformer is proposed, which
to the best of our knowledge, is the first work to use universal
transformer for speech recognition. It generalizes the speech
transformer with dynamic numbers of encoder/decoder layers,
which can relieve the burden of tuning depth related hyperpa-
rameters. Universal transformer adds the depth and positional
embeddings repeatedly for each layer, which dilutes the acous-
tic information carried by hidden representation, and it also per-
forms a partial update of hidden vectors between layers, which
is less efficient especially on the very deep models. For better
use of universal transformer, we modify its processing frame-
work by removing the depth embedding and only adding the po-
sitional embedding once at transformer encoder frontend. Fur-
thermore, to update the hidden vectors efficiently, especially on
the very deep models, we adopt a full update. Experiments on
LibriSpeech, Switchboard and AISHELL-1 datasets show that
our model outperforms a baseline by 3.88%-13.7%, and sur-
passes other model with less computation cost.
Index Terms: speech recognition, universal transformer, dy-
namic depth, recurrent inductive bias

1. Introduction
End-to-end models have been introduced into automatic speech
recognition (ASR) successfully over conventional hybrid mod-
els. Being a single model which directly maps audio signals
to text sequences, end-to-end models learn the mapping holis-
tically without error propagation from multiple pipelined com-
ponents or using handcrafted features like pronunciation dic-
tionary, greatly reducing system complexity. In recent years,
a number of end-to-end models have been proposed for ASR
including connectionist temporal classification (CTC) models
[1, 2, 3], attention based encoder-decoder models [4, 5, 6],
and RNN transducer [7]. CTC models map audio signals to
target labels by an encoder only, which is quite straightfor-
ward. However, it ignores the interdependence between speech
frames, thus missing the contextual information. Attention
based encoder-decoder models are the most frequently used
ones. The encoder transforms audio signals into high-level
representations, from which the decoder generates the text se-
quences in an auto-regressive manner one token at a time.

More recently, the transformer model has been brought into
ASR and is named as speech transformer [8]. It is an encoder-
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decoder architecture as well, except that it uses self-attention
network instead of convolutional neural network (CNN) or re-
current neural network (RNN). Self-attention network can learn
pairwise relationship between any two elements directly. It does
not incur the vanishing gradient problem of RNN or is limited
by the kernel size of CNN, thus is able to capture longer range
context. Besides, its capability for parallel computation also
enables batched operation and fast computation speed. Several
further studies use speech transformer model for Mandarin Chi-
nese speech recognition [9, 10] and online speech recognition
[11].

Despite the advantages mentioned above, the fixed numbers
of encoder and decoder layers in the transformer model limit its
computation capability. On the one hand, compared with RNN
and long short-term memory (LSTM) networks which have iter-
ative or recursive computation, speech transformer model loses
the recurrent inductive bias, which is helpful to tackle tasks of
varying complexity. Each input speech time step goes through
the same and fixed numbers of encoder and decoder layers to
compute the final output, regardless of the fact that different
speech time steps differ in phoneme obscurity and noise level,
thus may require different computation resources. On the other
hand, determining the numbers of encoder and decoder layers
requires careful tuning for each dataset to achieve the optimal
performance. Speech transformer model was tested for perfor-
mance in [8] with 5 different depth combinations of encoder and
decoder.

There are several studies dealing with the depth of encoder
and decoder building blocks. In [6], it builds a deeper encoder
by adding residual blocks and using multiple CNN layers before
bidirectional LSTM network. The time-depth separable convo-
lution model [12] trains very deep convolutional encoders via
a soft attention window pre-training scheme. [13] proposes a
very deep transformer architecture with up to 48 encoder and
decoder layers to enlarge the computation capability. It also ap-
plies stochastic residual layers to improve generalizability and
to prevent overfitting. However, these methods still require us
to tune depth related hyperparameters, e.g. [13] tested 9 dif-
ferent depth combinations with depth ranging from 4 layers
to 48 layers. Different from [13], [14] trains very deep trans-
former models (up to 40 layers) and then randomly drop layers
at training time in order to do efficient layer pruning at inference
time. Recently, M. Dehghani et al. [15] proposes the universal
transformer model, which achieves the state-of-the-art results
on LAMBADA language modeling task. It has the transformer-
like architecture and uses a dynamic per-position halting mech-
anism to choose the required number of layers for each input
time step dynamically, which exactly addresses the issues with
speech transformer analyzed above.

In this paper, we successfully introduce the universal trans-
former model to ASR task and we term our model as universal
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Figure 1: Universal Speech Transformer model architecture.

speech transformer. To the best of our knowledge, this is the
first work regarding the dynamic encoder and decoder depth in
ASR. The recurrent nature of universal transformer best suits
the needs of recognizing phonemes with different complexity
and noise level, at the same time dynamically learning the en-
coder and decoder depth, which relieves the burden of tuning
depth related hyperparameters. However, universal transformer
model has two problems when applied on ASR. First, it adds the
depth embedding and positional embedding repeatedly for each
layer, which dilutes the acoustic information carried by hidden
representation. Second, it performs a partial update of hidden
vectors between layers, which is less efficient compared to the
full update given the same number of update. To tackle these
two problems, we remove the depth embedding and only add
the positional embedding once at the transformer encoder fron-
tend, and we replace the partial update of hidden representations
between layers with a full update. On the LibriSpeech, Switch-
board and AISHELL-1 ASR datasets, our proposed universal
speech transformer model outperforms a baseline by 3.88%-
13.7%, and achieves better results with much less computation
cost compared with the very deep transformer model using 36
encoder layers and 12 decoder layers in [13]. From the experi-
mental results, it can be seen that the number of encoder layers
required varies among different input time steps and different
datasets, which further substantiates the value of dynamic depth
over fixed depth for datasets with varying complexity.

2. Model architecture
2.1. Universal speech transformer

Universal speech transformer is based on the popular speech
transformer model, which we refer the reader to [8] for full
details. Same as speech transformer, the core module of uni-
versal speech transformer is the multi-head attention network.
The main change is on the dynamic encoder and decoder depth.
Speech transformer model has fixed encoder and decoder depth.
Compared with RNN and LSTM networks which have iterative
or recursive computation, speech transformer loses the recur-
rent inductive bias. Universal speech transformer addresses this

Figure 2: Example of adaptive computation time technique with
4 input time steps. Maximum number of layers L is 5 here.
Illustration is applicable to both encoder and decoder.

issue with dynamic encoder and decoder depth. The overall
framework of universal speech transformer is presented in Fig-
ure 1. The adaptive computation time technique [16] is applied
to each input time step to calculate the required computation re-
sources, in this case the numbers of encoder and decoder layers,
before emitting the final outputs. Each input speech time step
requires different level of computation resources due to obscu-
rity of different phonemes and noise variation along the utter-
ance. So does each text input. In particular, for the hidden state
Hj = (hj

1, ..., h
j
t) ∈ Rt×d in jth layer, a probability vector at

ith time step is calculated by a sigmoid function:

pji = kσ(Whj
i + b) (1)

whereW ∈ Rd×1, b ∈ R1, k is a scaling factor, W , b and k are
shared across all layers, i ∈ [1, t], j ∈ [1, L], L is the maximum
depth defined beforehand.

The halting probability is the summation of the probability
calculated in Eq. 1, which denotes the probability to emit the
final output at ith time step in jth layer:

haltji =

j∑
k=1

pki (2)

The number of encoder or decoder layers required at each
input time step is decided when the halting probability reaches
the threshold, or when the encoder or decoder reaches the max-
imum depth L:

Ni = min(L,max(n′ : haltn
′

i ≤ 1− ε)) (3)

where ε is a small constant (0.01 in this paper).
The number of encoder or decoder layers is therefore the

maximum number of layers among all input time steps:

N = max(Ni) i ∈ [1, t] (4)

The input at each time step i emits the corresponding output
at N th

i layer. For the input time steps where the outputs are
emitted earlier than the other time steps, i.e. Ni < N , the last
hidden states are carried forward until all the time steps emit the
outputs or when the encoder or decoder reaches the maximum
depth. The hidden state at ith time step in jth layer is thus:

hj
i =

{
hj
i 1 ≤ j ≤ Ni

hNi
i Ni < j ≤ N

(5)
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We illustrate the adaptive computation time technique for
calculation of the numbers of encoder and decoder layers in
Figure 2. Each hidden state computes a probability to deter-
mine whether it halts at current layer, i.e. reach the required
number of layers. Hidden state shaded in grey means the cur-
rent time step halts already, but because there are other time
steps which have not reached the required numbers of layers,
this time step hidden state is replicated over to the next layer (by
thick arrow). Otherwise, the computation between each layer is
through the standard transition function (by thin arrow), in this
case the transformer encoder or decoder multi-head attention
and feedforward network.

2.2. Modifications on universal transformer model

As mentioned earlier, universal transformer model has two
problems when applied on ASR. Therefore, we make two
modifications to the original universal transformer model here.
Firstly, universal transformer model adds both the positional
embedding and the depth embedding repeatedly for each en-
coder and decoder layer as Eq. 6 and Eq. 7.

PEdep
(pos,2i) = sin(pos/100002i/d) + sin(dep/100002i/d)

(6)

PEdep
(pos,2i+1) = cos(pos/100002i/d) + cos(dep/100002i/d)

(7)

where pos is the position, dep is the depth, d is the positional
and depth embedding dimension, and i is the ith dimension.

For the universal speech transformer, we do not add the
depth embedding for each encoder and decoder layer. Only the
positional embedding is added once before the repeated build-
ing blocks as Eq. 8 and Eq. 9. This is based on the assumption
that adding the positional and depth embeddings iteratively for
each layer will dilute the acoustic information carried by hidden
representation, given that each speech frame under analysis only
has a window size of 25ms and does not contain much time-
domain information. In contrast, universal transformer encodes
the word embedding. A word possibly spans tens of analysis
frames in ASR context, so a word embedding contains much
richer information, and it will be of less influence to repeatedly
add the positional and depth embeddings. Besides, the aver-
age depth in our model (around 21) is much higher than the
average depth in the universal transformer model (around 8 in
LAMBADA language modeling), so adding the depth embed-
ding repeatedly for each layer has more impact in our model.
Additionally, adding the depth embedding to each layer pro-
vides the depth information to the hidden representation and
may be beneficial for calculating the optimal encoder and de-
coder depth. However, depth information is already implicitly
embedded in the hidden representation, which is calculated pro-
gressively from layer to layer. Removing the depth embedding
does not affect the dynamic encoder and decoder depth compu-
tation.

PE(pos,2i) = sin(pos/100002i/d) (8)

PE(pos,2i+1) = cos(pos/100002i/d) (9)

Secondly, in each layer of the universal transformer model,
hidden representation is updated as below using pji calculated
from Eq. 1:

Hj+1 = [pj1, ..., p
j
t ] ∗ H̃

j+1 + (1− [pj1, ..., p
j
t ]) ∗H

j (10)

where H̃j+1 is the transformed state after multi-head attention
and feedforward network and Hj+1 is the updated state, i.e. it

Table 1: Details of datasets used for experiments

LibriSpeech

Training set 100h
Test clean set 5.4h
Test other set 5.1h

Switchboard

Training set 300h
SWBD set 2.1h
CallHome set 1.6h

AISHELL-1

Training set 150h
Test set 5h

Table 2: WER results of end-to-end speech recognition models
on LibriSpeech 100h

Model Test clean Test other

End-to-end (E2E) [17] 14.7 40.8
E2E with augmented data [18] 15.1 -

LAS [19] 12.9 35.5
Baseline 12.0 29.7

only performs a partial update of hidden state by a pji proba-
bility, with the addition of previous hidden state by a 1 − pji
probability. The partial update is not very efficient, and calcu-
lating hidden state as Eq. 10 requires more times of update and
deeper layers to reach the optimal hidden state, which in turn
may bring the vanishing gradient problem. To avoid this prob-
lem, and given that our model is already very deep, we use the
transformed state H̃j+1 directly as the next layer hidden repre-
sentation without the probability factor to perform an efficient
full update. We will test these two modifications in experiments.

3. Experiments
3.1. Datasets

We conduct experiments with the universal speech transformer
model on three publicly available datasets, including Lib-
riSpeech [20], Switchboard [21] and AISHELL-1 [22]. Lib-
riSpeech consists of 16kHz read English speech from audio-
books. Switchboard is a 300 hour corpus of conversational En-
glish telephone speech. AISHELL-1 is a 16kHz Chinese Man-
darin speech corpus recorded by 400 speakers from different
accent areas in China. The characteristics of the datasets are
summarized in Table 1.

3.2. Experimental setup

We use Espnet toolkit [23] for experiments. Input acoustic fea-
tures are 80-dimensional filterbanks extracted with a window
size of 25ms shifted every 10ms, which are mean and variance
normalized. Utterances longer than 3000 frames or 400 charac-
ters are discarded to keep memory manageable. In the training
stage, the input samples are shuffled randomly and trained with
batch size 12. We adopt the unigram sub-word algorithm with
maximum vocabulary size being 5000. The two CNN layers
at the bottom of encoder in Figure 1 have filter size (3,2) and
stride 2, each followed by a rectified linear unit (ReLU) activa-
tion. For multi-head attention network, the attention dimension
is 256, the number of attention heads is 4, the dimension of
feedforward network is 2048. For universal speech transformer
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Table 3: Two modifications on universal transformer model on
LibriSpeech 100h

Model Test clean Test other

Baseline 12.0 29.7
Universal transformer 24.2 43.7
The proposed model 11.3 28.3

w/o remove depth embedding 19.5 37.8
w/o full hidden state update 15.0 32.1

Table 4: Comparison with very deep transformer model on all
three datasets

Model Switchboard (WER)

SWBD CallHome All

Baseline 8.8 18.0 13.4
36Enc-12Dec [13] 10.4 18.6 -
48Enc-12Dec [13] 10.7 19.4 -
60Enc-12Dec [13] 10.6 19.0 -
Ensemble of above 3 [13] 9.9 17.7 -
The proposed model 8.3 17.3 12.8

Model AISHELL-1 (CER)

Dev Test

Baseline 6.4 7.3
36Enc-12Dec [13] 6.4 7.3
The proposed model 5.8 6.3

Model LibriSpeech 100h (WER)

Test clean Test other

Baseline 12.0 29.7
36Enc-12Dec [13] 12.8 30.4
The proposed model 11.3 28.3

related hyperparameters, the maximum depth L in encoder is
24, and the maximum depth L in decoder is 16, the scaling fac-
tor k is set as 0.25. During experiments, the dynamic depth
for encoder and decoder obtained tends to be small, so we set
a minimum depth for encoder and decoder, i.e. the model only
performs dynamic depth computation after the minimum depth
is reached. Based on the encoder and decoder depth combina-
tions tested by [13], we set the minimum depth for encoder to
10, and 6 for decoder. The initial value of the learning rate is
5.0, the encoder and decoder dropout rate is 0.1. We have a
strong baseline as shown in Table 2, which comes from the best
results well designed in Espnet toolkit.

3.3. Results

We first test the two modifications on the universal transformer
model analyzed in Section 2.2 using LibriSpeech 100h dataset.
From Table 3, using universal transformer model directly for
speech recognition deteriorates performance a lot compared to
the baseline. The universal speech transformer model using the
efficient full hidden state update and removing the depth embed-
ding for each layer achieves the best performance. We believe
that using the full hidden state update facilitates the encoder or
decoder to obtain the optimal hidden representation. Remov-
ing the depth embedding is most efficient, and it confirms our
assumption that adding depth embedding repeatedly for each
layer dilutes the acoustic information in hidden representation.

Next, we compare our proposed method with [13], which

Figure 3: Number of encoder layers required Ni in Eq. 3 for
each time step i and average encoder depth of two randomly
sampled speech utterances from Switchboard test dataset.

Table 5: Number of utterances and average encoder depth
across all speech time steps for three datasets

Dataset No. of utterances Depth

LibriSpeech
Test clean 2620 21.118
Test other 2939 21.268

Switchboard
All 4458 21.738

AISHELL-1
Test 5741 21.428

did 9 test runs and set a good benchmark for various encoder
and decoder depth combinations on transformer model. The re-
sults of three datasets are summarized in Table 4. [13] tested 9
encoder and decoder depth combinations ranging from 4 layers
to 48 layers, and the best combination is using 36 encoder layers
and 12 decoder layers. They further did an ensemble of three
models (row 2, 3, 4 of Switchboard experiments) to achieve
their optimal performance (row 5 of Switchboard experiments).
Our model surpasses the baseline by 3.88%-13.7%, and outper-
forms [13] on all three datasets. We randomly sample two ut-
terances from Switchboard dataset and compare the recognition
result with the baseline in Figure 3. It can be seen that for both
cases, wrong words near the end of the utterances predicted by
the baseline are corrected by our model with relatively higher
number of layers in those time steps. In addition, we calculate
the average encoder depth across all speech time steps for three
datasets and list them in Table 5. The average numbers of en-
coder layers are all around 21 in three datasets. Compared with
[13] which deploys 36 encoder layers, our model dynamically
determines the encoder and decoder depth for each input time
step with significantly less training cost overall, which further
demonstrates the value and potential of universal speech trans-
former model.

4. Conclusions
In this paper, we introduce the universal speech transformer,
which generalizes speech transformer with dynamic encoder
and decoder depth for each input time step. Our model is ca-
pable of tackling tasks of varying complexity by bringing the
recurrent inductive bias to speech transformer model, as well as
relieving the burden of tuning depth related hyperparameters.
It outperforms the baseline by 3.88%-13.7%, and achieves bet-
ter performance than 36 layer encoder model with much less
computation cost. In the future, we are interested in exploring
computation resource differences between different languages.
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[17] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer,
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