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Abstract
Transformer has shown impressive performance in auto-

matic speech recognition. It uses an encoder-decoder structure
with self-attention to learn the relationship between high-level
representation of source inputs and embedding of target outputs.
In this paper, we propose a novel decoder structure that fea-
tures a self-and-mixed attention decoder (SMAD) with a deep
acoustic structure (DAS) to improve the acoustic representa-
tion of Transformer-based LVCSR. Specifically, we introduce
a self-attention mechanism to learn a multi-layer deep acous-
tic structure for multiple levels of acoustic abstraction. We also
design a mixed attention mechanism that learns the alignment
between different levels of acoustic abstraction and its corre-
sponding linguistic information simultaneously in a shared em-
bedding space. The ASR experiments on Aishell-1 show that
the proposed structure achieves CERs of 4.8% on the dev set
and 5.1% on the test set, which are the best reported results on
this task to the best of our knowledge.
Index Terms: speech recognition, attention, Transformer

1. Introduction
The sequence-to-sequence (S2S) approach [1] has achieved
remarkable results in automatic speech recognition (ASR),
in particular, large vocabulary continuous speech recognition
(LVCSR) [2–8]. Unlike conventional hybrid ASR, S2S requires
neither lexicons, prerequisite models, nor decision trees. It op-
timizes the acoustic and language model jointly and simultane-
ously, learning the mapping directly from speech to text.

The most commonly used structure in S2S approaches is
the attention-based encoder-decoder model (AED) [9]. This
model maps the input feature sequences to the output character
sequences and has been widely used in ASR tasks [7, 10, 11].
Among them, the Listen, Attend and Spell (LAS) [12] structure
has shown superior performance to a conventional hybrid sys-
tem using large amounts of training data. LAS uses an encoder
that is a pyramidal recurrent neural network (RNN) to convert
low-level speech signals into higher-level acoustic representa-
tions, and then the relationship between these representations
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and targets is learned by an attention mechanism at the RNN-
based decoder. However, due to the sequential nature of RNNs,
the LAS model doesn’t support parallelization of calculations,
therefore, is prevented from big data training.

To remedy this problem, new encoder-decoder structures
with self-attention networks have recently been proposed [13].
With self-attention, these structures can not only effectively
capture global interaction between sequences [14], learning the
direct dependence of long-distance sequences [15], but also
support parallelized model training [13]. Now, these structures
are widely used in a variety of machine learning tasks provid-
ing significant improvements. Vaswani et al. [13] first proposed
a S2S self-attention based model called the Transformer, and
it achieves state-of-the-art performance on WMT2014 English-
to-French translation task with remarkable lower training cost.
For the ASR task, Transformer also uses the AED struc-
ture. Unlike LAS, the Transformer uses the multi-head self-
attention (MHA) sub-layer to learn the source-target relation-
ship, and capture the mutual information within the sequences
to extract the most effective high-level features. This enables
Transformer-based ASR systems to achieve competitive perfor-
mance over the conventional hybrid and other end-to-end ap-
proaches [11, 16–21].

Inspired by the Transformer and the layer-wise coordi-
nation [22], we propose a novel decoder structure that fea-
tures a self-and-mixed attention decoder (SMAD) with a deep
acoustic structure (DAS) to improve the acoustic representation
of Transformer-based LVCSR. With reference to the standard
Speech-Transformer in [11], several improvements have been
made at the decoder.

In the Speech-Transformer decoder, the linguistic informa-
tion is first extracted using a self-attention sub-layer, and then
processed together with the encoder output in another source-
target attention sub-layer. The same encoder output is repeat-
edly taken by every decoder layer to establish the acoustic-
target relationship. In this paper, we propose a new attention
block, called self-and-mixed attention (SMA), as an unified at-
tention sub-layer in the decoder, that takes the concatenation
of the encoded acoustic representation and the word label em-
bedding as input. In this way, the acoustic and linguistic infor-
mation is projected into the same subspace in the deep decoder
network structure during the attention calculation.

Furthermore, our decoder learns the acoustic and linguistic
information together in a layer-by-layer fashion with the SMA
mechanism instead of repeatedly using the same acoustic repre-
sentations in each decoder layer. This is motivated by two intu-
itions, 1) we hope to benefit from a deep decoder network struc-
ture that encodes multi-level of abstraction from both acous-
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tic and linguistic representation, and 2) we hypothesize that a
shared acoustic and linguistic embedding space will help the
network to learn the association between acoustic and linguistic
information, and improve their alignments.

We will introduce the Transformer-based ASR as the prior
work in Section 2, and discuss the details of the new decoder in
Section 3.

2. Transformer-based ASR
2.1. Encoder-Decoder with Attention

The Transformer model [13] uses an encoder-decoder structure
similar to many other neural sequence transduction models. The
encoder can be regarded as a feature extractor, which converts
the input vector x into a high-level representation h. Given h,
the decoder generates prediction sequence y one token at a time
in an auto-regressive manner. In an ASR task [11, 23], tokens
are usually modeling units, such as phones, characters or sub-
word, etc.

The encoder has N layers, each of which contains two sub-
layers: a multi-head self-attention and a position-wise fully con-
nected feed-forward network (FFN). Similar to the encoder, the
decoder is also composed of a stack of M identical layers. In
addition to the two sub-layers, each layer of decoder also has
a third sub-layer between the FFN and MHA to perform multi-
head source-target attention over the output representation of
the encoder stack.

2.2. Multi-Head Attention

Multi-head attention is the core module of the Transformer
model. Unlike single-head attention, MHA can learn the re-
lationship between queries, keys and values from different sub-
spaces. It computes the “Scaled Dot-Product Attention” with
the following form:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where Q ∈ Rtq×dq is the query, K ∈ Rtk×dk is the key and
V ∈ Rtv×dv is the value. t∗ are the length of input and d∗
are the dimension of corresponding elements. To prevent push-
ing the softmax into extremely small gradient regions caused by
large dimensions, the 1√

dk
is used to scale the dot products.

In order to calculate attention from multiple subspaces,
multi-head attention is constructed as follow:

MHA(Q,K, V ) = Concat(Head1, · · · , HeadH)WO, (2)

Headi = Attention(QWQ
i ,KW

K
i , V WV

i ), (3)

where W ∗
i is the projection matrix. WQ

i ∈ Rdmodel×dQ , WK
i ∈

Rdmodel×dK , WV
i ∈ Rdmodel×dV and WO ∈ Rdmodel×dO , dmodel

is the dimension of the input vector to the encoder, H is the
number of heads. For each Q, K, V in each attention, they are
projected to d∗ dimensions through three linear projection lay-
ersW ∗

i respectively. After performingH attentions, the outputs
are then concatenated and projected again to obtain the final val-
ues.

2.3. Positional Encoding

Unlike RNN, the MHA contains no recurrence and convolution,
it cannot model the order of the input acoustic sequence. We
follow the idea of “positional encoding” that is added to the
input as described in [13].
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Figure 1: The system architecture of the Transformer-based
ASR with the proposed self-and-mixed attention decoder.

3. Self-and-Mixed Attention Decoder
3.1. Architecture

Figure 1 shows an encoder-decoder architecture for ASR. We
adopt the same encoder as in Transformer, and propose a Self-
and-Mixed Attention Decoder (SMAD), that is an attention-
based auto-regressive structure. The main difference between
SMAD and the standard Transformer decoder [11] lies in the
ways we integrate acoustic representations, h.

Firstly, unlike the decoder in Transformer which takes the
same h repeatedly to every decoder layer, SMAD employs a
deep acoustic structure (DAS), which is a M -layer network to
capture multiple level of acoustic abstraction. For simplicity,
we use a single-head self-and-mixed attention in Figure 2 to
illustrate the Self-and-Mixed MHA component in the decoder
layer of Figure 1, where the self-attention handles the acoustic
representations, and the mixed-attention handles the acoustic-
target alignment. With M decoder layers stacking in a serial
pipeline, the flow of acoustic information in Figure 2 (green)
forms a deep acoustic structure.

Secondly, the decoder in the standard Transformer uses a
self-attention module to learn the current target representation
based on the previous tokens and learn the acoustic-targets de-
pendencies using another separate source-target attention sub-
layer. However, in SMAD, we merge these two attentions into
one as illustrated in Figure 2. We concatenate the encoded
acoustic representation and linguistic targets to form a joint em-
bedding as the input to the decoder layer. After the self-and-
mixed MHA, the concatenated representation with both acous-
tic and linguistic information is fed to the FFN and next self-
and-mixed MHA. Since the information flow in the proposed
decoder contains two modalities, we also employ modality-
specific residual connections and position-wise feed forward
networks to separate linguistic and acoustic information before
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Figure 2: A single-head self-and-mixed attention mechanism as
a sub-layer of the decoder in Figure 1.

obtaining the posterior probability at the output of the softmax
layer preceded by a linear layer.

We perform the same downsampling as in [23] before the
encoder using two 3 × 3 CNN layers with stride 2 to reduce
the GPU memory occupation and and the length of the input
sequence.

3.2. Self-and-Mixed Attention (SMA)

For simplicity, we take one head of the self-and-mixed MHA in
Figure 1 as an example. The SMA consists of two independent
attention mechanisms: a self-attention for acoustic-only repre-
sentation, and a mixed attention to learn linguistic representa-
tion and the acoustic-target association. As shown in Figure 2,
S refers to source, which is the acoustic representation (marked
in green) and T refers to target, which is the linguistic informa-
tion (marked in yellow).

Specifically, for self-attention in the SMA, Q, K, V ∈
Rn×dmodel are projected byWQ

S ,WK
S ,WV

S from S respectively,
with n-length acoustic representation. The acoustic hidden rep-
resentation in the current layer is generated using the accumu-
lated acoustic information in the previous layer using the self-
attention mechanism.

For the mixed attention, a linguistic token in the current
layer is generated using the acoustic hidden representation and
the preceding linguistic tokens in the previous layer using a
mixed attention mechanism. The mixed attention is formulated
as follows:

MixedAtt(Q,K, V ) = softmax(
QKT

√
dmodel

+Mask)V, (4)

Q = TWQ
M , (5)

K = Concat(S, T )WK
M , (6)

V = Concat(S, T )WV
M , (7)

Mask(i, j) =

{−∞, j > i+ n

0, otherwise
, (8)

where Q ∈ Rm×dmodel , K, V ∈ R(n+m)×dmodel , and Mask ∈
Rm×(n+m) is the mask matrix,m is the number of tokens, i and
j refer to the index of row and column of Mask. To project the
acoustic and linguistic information into the same subspace, we
concatenate S and T and apply the same projection matrix WM

for K and V . We use the acoustic representation h of entire
sentence for the decoding of tokens, at the same time, we intro-
duce a Mask to ensure that the prediction of token sequence is
causal, i.e., when predicting a token, we only use information
of the tokens before it. When Mask(i, j) equals to −∞, the
corresponding position in softmax output will approach zero,
which prevents position i from attending to position j.

3.3. Multi-Ojective Learning

As often done in encoder-decoder structures, our model also
uses the connectionist temporal classification (CTC) [23–25]
to benefit from the monotonic alignment. The CTC loss func-
tion [24] is used to jointly train the extraction of acoustic repre-
sentation by Multi-Objective Learning (MOL):

LMOL = λlogPctc(C|X) + (1− λ)logP ∗
att(C|X), (9)

P ∗
att(C|X) =

L∏
l=1

P (cl|c∗1, · · · , c∗l−1, X), (10)

Pctc(C|X) =
∑
Z

T∏
t=1

P (zt|zt−1, C)P (zt|X), (11)

P (zt|X) = Softmax(LinB(ht)), (12)

where LMOL is the multi-objective loss with a tuning parame-
ter λ ∈ [0, 1], P ∗

att(C|X) is the Transformer loss modeled by
Kullback-Leibler divergence [26] loss . X = {xt ∈ RD|t =
1, · · · , T} is a T -length speech feature sequence, xt is a D-
dimensional speech feature vector at frame t, C = {ct ∈ U|l =
1, · · · , L} is anL-length letter sequence containing all the char-
acters U in this task, and c∗l−1 is the ground truth of c∗l ’s previ-
ous token. Z = {zt ∈ U ∪ 〈b〉|t = 1, · · · , T} is a framewise
letter sequence with an additional blank symbol “〈b〉”, and ht

is the acoustic hidden representation vector, LinB(·)is a linear
layer to convert ht to a (|U|+ 1) dimensional vector.

We explore two different locations where the CTC loss can
be applied as shown in Figure 1. For CTC1,

ht = Encodert(X), (13)

Encodert(·) accepts the full feature sequence X and output
acoustic representation ht at t. Similar to the previous tech-
niques, this CTC loss is used to jointly train the encoder.

For CTC2, since the acoustic representation is also updated
in the SMAD, ht is produced as follows:

ht = DecoderAt (Encoder(X)), (14)

where the DecoderAt (·) is the acoustic side of decoder stack out-
put at t. In this way, the entire acoustic representation extraction
process is jointly trained using the CTC loss.

4. Experiments
4.1. Experimental setup

We conduct experiments on 170 hours Aishell-1 [27] using the
ESPnet [28] end-to-end speech processing toolkit. For all ex-
periments, we extract 80-dimensional log Mel-filter bank plus
pitch and its ∆, ∆∆ as acoustic features and normalize them
with global mean computed from the training set. The frame-
length is 25 ms with a 10 ms shift.

The standard configuration of the state-of-the-art ESPnet
Transformer recipe on Aishell-1 is used for both the baseline
and proposed model. Each model contains 12-layer encoder and
6-layer decoder, where the dmodel = 256 and the dimensionality
of inner-layer in FFN dff = 2, 048. In all attention sub-layers,
4 heads are used for MHA. The whole network is trained for
50 epochs and warmup [13] is used for the first 25,000 iter-
ations. We use 4,230 Chinese characters which are extracted
from the train set as modeling unit. A ten-hypotheses-width
beam search is used with the the one-pass decoding for CTC as

Self-Attention Mixed 
Attention

SW MW MW

S T
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Table 1: Results comparsion on Aishell-1 in CER%

System Dev Test

Kaldi (chain) - 7.5
Kaldi (nnet3) - 8.6
LAS [34] - 10.6
ESPnet RNN [36] 6.8 8.0
RNN-T [35] 10.1 11.8
Transformer +SP+CTC (baseline) [36] 6.0 6.7

T-SMAD +SP+CTC1 5.9 6.4
T-SMAD +SP+CTC2 5.4 6.0

described in [24] and a two-layer RNN language model (LM)
shallow fusion [29, 30], which was trained on the training tran-
scriptions of Aishell-1 with 4,230 Chinese characters. We also
evaluate the effect of speed perturbation (SP) [31], SpecAug-
ment (SpecA) [32] and CTC joint training in our experiments.

4.2. Results and Discussion

Table 1 reports the results of the proposed Transformer-based
ASR, referred to as T-SMAD, the conventional Kaldi hy-
brid [33] and other E2E ASR systems. Shallow fusion with 5-
gram language model is used in both [34, 35]. In ESPnet RNN,
Transformer [36] and T-SMAD, the RNN LM was also used for
shallow fusion. We consider the Transformer with speed pertur-
bation and CTC in ESPnet as our reference baseline.

According to Table 1, the T-SMAD system with the pro-
posed CTC2 outperforms all other systems, including both the
Transformer baseline and the Kaldi hybrid systems. A relative
20.0% CER reduction on the test set is obtained over the best
hybrid system (chain). A relative 10% CER reduction on the
dev set and 10.4% CER reduction on the test set is reported
over the best E2E system (baseline). Moreover, it can be seen
that CTC2 provides better ASR results than CTC1 due to the
fact that the acoustic feature extraction of the entire network
and the decoder are jointly trained in CTC2. In these experi-
ments, the default parameter λ = 0.3, which is tuned for the
baseline system in ESPnet, is used for both CTC1 and CTC2.

In addition to the default configuration of ESPnet, we fur-
ther implement the SpecAugment in our system to investigate
its impact on the ASR performance, all experiments are with
RNN LM. As shown in Table 2, the baseline system with
SpecAugment gives a relative CER reduction of 13.3% on dev
set and 17.9% on test set. T-SMAD with SpecAugment con-
tinues to outperform the corresponding Transformer baseline
with SpecAugment by relative 8.6% on dev and 9.4% on the test
set. The best performing system, T-SMAD+SP+SpecA+CTC2
achieves a CER of 4.8% and 5.1% on the dev and test set, re-
spectively. To the best of authors’ knowledge, these are the best
results reported on the Aishell-1 corpus. It can be concluded
that the proposed SMAD achieves improved alignment due to
the deep acoustic structure and the mixed attention, and yields
consistent performance improvements over the standard Trans-
former architecture.

To examine the contribution of each component in SMAD,
we perform several ASR experiments by removing the encoder,
DAS, mixed attention and modelity-specific network one at a
time. To focus on the SMAD mechanism, all the results are
produced without additional LM and are reported in Table 3.

Firstly, we remove the encoder in T-SMAD. For a fair com-
parison, we increase the number of decoder layers to 18 in order

Table 2: Results (CER%) with SpecAugment on Aishell-1

System Dev Test

Transformer +SP+SpecA 5.8 6.4
Transformer +SP+SpecA+CTC 5.2 5.5

T-SMAD +SP+SpecA 5.3 5.8
T-SMAD +SP+SpecA+CTC1 5.0 5.4
T-SMAD +SP+SpecA+CTC2 4.8 5.1

Table 3: Contribution of each component in SMAD architecture
to the ASR performance on Aishell-1. All experiments are with
speed perturbation and SpecAugment.

System Dev Test

T-SMAD 5.6 6.1
Transformer 6.7 7.4

T-SMAD w/o encoder 7.5 8.2
T-SMAD w/o DAS 6.6 7.3
T-SMAD w/o mixed attention 6.2 6.9
T-SMAD w/o modality-specific network 5.8 6.3

to keep the number of model parameters the same. Directly con-
catenating the acoustic features with linguistic targets as the in-
put to the decoder increases the CER from 6.1% to 8.2% on the
test set, that suggests the encoder block is essential for effective
acoustic representation. Secondly, we give the same encoder
acoustic representation to each SMAD layer in the say way as
the standard Transformer, without the deep acoustic structure
(‘T-SMAD w/o DAS’). This system gives a higher CER than
T-SMAD, that confirms the effectiveness of the deep acoustic
structure. Thirdly, we replace the mixed attention with the two
standard attention mechanisms of Transformer to extract the lin-
guistic features and learn the source-target alignment, respec-
tively. We observe that the removal of mixed attention degrades
the performance, that suggests that mapping acoustic-linguistic
into the same subspace does help to learn a better alignment.
Lastly, the contribution of a modality-specific network has been
found to be less prominent than the previous components. It
is worth noting that even without modality-specific network, T-
SMAD still outperforms the standard Transformer without any
increase in the number of model parameters.

5. Conclusion
We propose a novel decoder structure for Transformer-
based LVCSR that features a self-and-mixed attention decoder
(SMAD) with a deep acoustic structure (DAS) to improve the
acoustic representation. With SMAD mechanism, we have
studied the interaction between acoustic and linguistic represen-
tation in the training and decoding of LVCSR system, that opens
up a promising future direction for improving E2E ASR sys-
tems. We confirm that SMAD and DAS effectively improve the
acoustic-linguistic representation in the decoder. The perfor-
mance gain is attributed to the self-and-mixed attention mecha-
nism that improves the acoustic-linguistic association and align-
ment in the Transformer decoder. The proposed technique has
achieved the best results ever reported on both the dev and test
sets of Aishell-1. Furthermore, we also investigate the impact
of the components of the SMAD on the ASR performance and
validate their effectiveness.
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