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Abstract
Recently, the Transformer-based end-to-end speech recognition
system has become a state-of-the-art technology. However, one
prominent problem with current end-to-end speech recognition
systems is that an extensive amount of paired data are required
to achieve better recognition performance. In order to grapple
with such an issue, we propose two unsupervised pre-training
strategies for the encoder and the decoder of Transformer re-
spectively, which make full use of unpaired data for training. In
addition, we propose a new semi-supervised fine-tuning method
named multi-task semantic knowledge learning to strengthen
the Transformer’s ability to learn about semantic knowledge,
thereby improving the system performance. We achieve the best
CER with our proposed methods on AISHELL-1 test set: 5.9%,
which exceeds the best end-to-end model by 10.6% relative
CER. Moreover, relative CER reduction of 20.3% and 17.8%
are obtained for low-resource Mandarin and English data sets,
respectively.

Index Terms: unsupervised pre-training, speech recognition,
Transformer, multi-task learning, semi-supervised learning

1. Introduction
Sequence-to-sequence attention-based models have recently
shown very promising results for automatic speech recognition
(ASR) tasks [1–5]. Compared with the traditional speech recog-
nition systems based on hidden Markov model (HMM), they
directly learn speech-to-text mapping with the pure neural net-
works, without a special phoneme dictionary to convert word-
s into phonemes. Transformer [6] is one of the state-of-the-
art sequence-to-sequence architectures, which has performed
promisingly in building end-to-end speech recognition system-
s [7–10]. Compared with RNN, Transformer introduces multi-
head attention to study features from multiple subspaces and di-
rections, so that the model can extract more representative fea-
tures. In addition, it calculates in parallel, which is faster than
RNN. However, end-to-end speech recognition usually requires
a great deal of paired data to train, in order to achieve better
recognition results. This is unfriendly to some low-resource ap-
plications. Relative to supervised data (including both speech
data and the corresponding text data), unpaired data are much
easier to collect. Therefore, how to use a large amount of un-
paired speech and text data from real life scenario to strengthen
the training performance of speech recognition systems has be-
come one of the hot topics for researchers.

In order to make full use of unpaired data, researchers had
proposed two main strategies: unsupervised pre-training and
semi-supervised learning. Unsupervised pre-training strategies
[11–13], like bidirectional encoder representations from Trans-
formers (BERT) [11] and generative pre-training (GPT) [13]
in the natural language processing field, aim to learn a gener-

al feature representation by unsupervised learning the data it-
self. Through fine-tuning stage, the learned general feature rep-
resentation knowledge allows the target function for numerous
downstream tasks to be set at a better start position for fur-
ther optimizations, which accelerates the model convergence
and improves the accuracy. Semi-supervised learning strate-
gies [14–16] usually enhance feature extraction from the paired
data through reconstructing the unpaired data with an Auto-
encoder [17]. These two strategies have proven efficient to use
large amounts of unpaired data to enhance supervised learning.

In the speech recognition field, researchers also proposed
some unsupervised pre-training strategies, such as contrastive
predictive coding (CPC) [18], autoregressive predictive coding
(APC) [19], and masked predictive coding (MPC) [20]. The
key idea of neural network based autoregressive language mod-
el or masked language model (MLM) [11] pre-training objec-
tive is utilized in these strategies to extract representations by
predicting future information or masked information. However,
the limitation of these strategies is that only the extracted a-
coustic semantic knowledge is explored in the unpaired speech
samples. In addition, [21] proposed using a trained TTS (text
to speech) model to convert unpaired text into speech and [22]
employed a trained ASR model to convert unpaired speech into
text. The above two methods aim to make labels for unpaired
data, but they are more complicated to operate than unsuper-
vised pre-training, and inaccurate labels may cause erroneous
back propagation.

Inspired by RNN-T [23] and BERT [11], we introduce un-
supervised pre-training into Transformer. For Transformer’s en-
coder and decoder, we propose two unsupervised pre-training
strategies, speech predictive coding (SPC) and text predictive
coding (TPC), respectively. The SPC strategy employs a large
amount of unpaired speech data with an MLM-like [11] objec-
tive to obtain general feature representations for speech, such as
acoustic semantic features. And the TPC strategy uses a large
amount of unpaired text data with an autoregression language
model objective to get general feature representations of the tex-
t, such as linguistic semantic features. In the global view, join-
t utilization of acoustic semantic knowledge and linguistic se-
mantic knowledge in speech recognition systems improves the
performance. In order to prevent the model from forgetting the
semantic knowledge during the fine-tuning stage, we propose a
new semi-supervised fine-tuning method, named multi-task se-
mantic knowledge learning (MTSL), which further strengthens
the model’s learning ability of semantic knowledge. With the
proposed unsupervised pre-training strategies and fine-tuning
method, a large amount of unpaired data can be used to improve
the performance of speech recognition systems.

The rest of the paper is organized as follows. In Section 2,
the unsupervised pre-training strategies and fine-tuning method
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are described. In Section 3, we introduce specific experimental
details. Experimental results are presented in Section 4. Finally,
the paper is concluded in Section 5.

2. Our proposed methods
2.1. System overview
In this paper, we investigate our proposed unsupervised pre-
training strategies and fine-tuning method on the Transformer
architecture, which includes three significant components: the
encoder, attention, and the decoder. We replace the position-
wise fully-connected feed-forward network layers in the stan-
dard Transformer architecture with one-dimensional convolu-
tion (Conv1D) layers, which introduce more non-linear char-
acteristics to speech recognition systems. To explore the effi-
cient contributions of sufficient amounts of unpaired data, we
pretrain the encoder and the decoder models with our proposed
unsupervised pre-training strategies, respectively. The SPC pre-
training aims to integrate useful acoustic semantic information
contained in speech into Transformer’s encoder by predicting
some masked features in the speech feature sequence. The TPC
pre-training provides Transformer’s decoder with rich linguis-
tic semantic information by an autoregressive language model
objective. Fig.1. illustrates the details of our Transformer block
and unsupervised pre-training strategies.

Figure 1: A schematic representation of our unsupervised pre-
training strategies and Transformer block.

2.2. SPC model
In order to obtain acoustic semantic knowledge, SPC takes an
MLM-like objective to obtain general feature representations of
speech. To pre-train the SPC model, time masking is first ap-
plied to the acoustic features, so that a series of t consecutive
time steps [t0, t0+t] are masked. The parameter t is chosen
randomly from a uniform distribution from 0 to the time mask
parameter W , and t0 is chosen randomly from [0, T -t], where
T is the time step of acoustic features and W is set to 30. Sim-
ilar to time mask, frequency mask is used so that the frequency
in range of [h0, h0+h] are masked. In addition, in order to
make SPC model training easier, we subsample and normalize
the FBank coefficients with the normalization layers and convo-
lution layers. The down-sampled FBank coefficients are further
extracted by an encoder, which is composed of our Transformer
block, to obtain high-level acoustic feature representations. Fi-
nally, the clean FBank coefficients are reconstructed through
a linear layer and transposed convolution layers. The detailed
structure for the SPC is shown in Fig.1b. Instead of calculating
the loss of all feature frames, we only calculate the loss of the
position corresponding to the masked FBank coefficients. The
loss function of SPC model is defined as follows:
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where {xbi
′, i = 1, 2, ..., n} are the output of SPC,

{xbi, i = 1, 2, ..., n} are the original unmasked FBank coef-
ficients, B is the batch size, and T is the time step of the FBank
coefficients. LHuber is the Huber loss function with δ = 0.5.

The SPC model utilizes the reconstruction loss to predict
the clean acoustic features from the masked acoustic features,
which enables the SPC model to learn the inter-relationships
within speech frames, such as the relationships between the
middle speech frames and the front or the back frames, and the
relationships between the local speech frames and the overall
speech frames. These relationships usually represent rich se-
mantic information from speech, which is very helpful for the
downstream task (ASR). After pre-training with SPC, we re-
move the linear layer and upsampling layers of the SPC model
and initialize the encoder of Transformer with the SPC mod-
el’s weights, so that the Transformer assimilates rich acoustic
semantic knowledge.

2.3. TPC model
The linguistic semantic information contained in the text is very
rich. In order to obtain this information, the TPC model uses
an autoregression language model objective to obtain general
feature representations of the text. As shown in Fig.1c, TPC
consists of a word embedding layer, a linear layer, and a de-
coder. The decoder is composed of our Transformer block with
a masked multi-head self-attention. We train a TPC model us-
ing a large amount of unpaired text. The loss function of the
TPC model is defined as follows:

LTPC =
1

B ·N
B∑

b=1

N∑

i=1

ybi log p(ybi
′|xb1, xb2, ..., xb(i−1))

(3)

where B is the training batch size, and N is the index for tex-
t tokens. {xbi, i = 1, 2, ..., n} are the input text sequences
for TPC, which consist of a sentence with a starting symbol
< sos >. {ybi′, i = 2, ..., n} are the autoregressive output se-
quences of TPC. {ybi, i = 1, 2, ..., n} are the target sequences
of TPC, which consist of a sentence with a terminator symbol
< eos >.

TPC model calculates the conditional probability of the
next word based on previous words in an autoregressive manner,
which enables the TPC model to learn about the relationships
between the former and the latter words in a sentence. These
relationships usually represent rich linguistic semantic knowl-
edge from the text. The Transformer-based speech recognition
system is also an autoregressive model. If we incorporate lin-
guistic information in each decoding step, the performance of
speech recognition systems improves, which is exactly the ben-
efit of the TPC model. After pre-training, we use the TPC mod-
el’s weights to initialize Transformer’s decoder, except for the
encoder-decoder attention part.

2.4. Multi-task semantic knowledge learning
In order to prevent Transformer from forgetting acoustic and
linguistic semantic knowledge during the fine-tuning process,
we propose a multi-task semantic knowledge learning (MTSL)
method, which is shown in Fig.2. Specifically, an auxiliary task
is introduced at the encoder output of Transformer, which re-
constructs the clean acoustic features with the same loss func-
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Figure 2: The structure of fine-tuning with multi-task semantic
knowledge Learning.

tion of the SPC model. Note that reconstruction loss is back-
propagated only when acoustic features are masked. In this
case, the masked acoustic features are seen as one kind of da-
ta augmentations of speech. We add another auxiliary task af-
ter the self-attention of the decoder, which uses the same loss
function as the TPC model for language modeling. Through
multi-task semantic knowledge learning, Transformer contin-
ues to learn about acoustic and linguistic semantic knowledge
during fine-tuning. The loss function of the fine-tuning process
with multi-task semantic knowledge learning is defined as fol-
lows:

LMTSL = αLCTC+(1−α)LTRA+λ1LSPC+λ2LTPC (4)

where LCTC is the CTC loss, LTRA is the cross entropy
loss of Transformer, and LSPC and LTPC are the SPC loss
and the TPC loss respectively. α and λ1,2 are hyper parameters
used to balance every losses. We set α = 0.3, λ1 = 0.2, and
λ2 = 0.1 in this paper.

3. Experimental setup
3.1. Data sets
In our experiments, for the sake of universality, both Mandarin
and English applications are considered. Mandarin datasets are
used including AISHELL-1 [24], AISHELL-2 [25], THCHS30
[26] and the Datatang1dataset: Chinese500. LibriSpeech [27]
and Tedlium2 [28] are used as the English datasets. For the
AISHELL-2 datset, only 681 hours of transcription are used.
AISHELL-1 training set includes about 151 hours of speech
for SPC pre-training and 151 hours of transcription for TPC
pre-training respectively, while AISHELL-1 fine-tuning dataset
consists of 151 hours paired data (both speech and transcrip-
tion). Our test experiments are executed on AISHELL-1 test
set (27 hours) and Tedlium2 test set(3 hours), the other datasets
are used only for unsupervised pre-training. Detailed informa-
tion of unsupervised pre-training datasets are provided in Table
1. All experiments are conducted using 80-dimensional FBank
coefficients, computed with a 25ms window and shifted every
10ms. The features are normalized via mean subtraction on the
speaker basis. In addition, the speed perturbations of 0.9, 1.0,
and 1.1 are used on the training data.

3.2. Implementation details
Our experiments were conducted on a Transformer-CTC hy-
brid speech recognition model. As suggested in [9], we used
the configuration named big model for Transformer, in which
datt=256, dconv1d=2048, dhead=4 , e=12, and d=6, except the
one-dimensional convolution with a 1*1 convolution kernel was

1A Chinese data provider (https://www.datatang.com/)

Table 1: Detailed Unsupervised Pre-training Dataset Informa-
tion

Dataset Speech (hours) Text transcription (hours)

AISHELL-1 151 151
THCHS30 30 30
Chinese500 500 500
AISHELL-2 − 681
LibriSpeech 960 960

used to replace the position-wise fully-connected feed-forward
network. In addition, a convolutional front-end was used to sub-
sample the acoustic features by a factor of 4.

For the unsupervised pre-training stage, we used the Adam
[29] optimizer with a square root learning rate scheduling [8]
(25000 warmup steps, 64 mini-batch size) to train the SPC mod-
el, and used the SGD [30] optimizer with 128 mini-batch size
to train the TPC model, respectively.

For the fine-tuning stage, inspired by discriminative fine-
tuning [31], we set different learning rates for different layer-
s. From the bottom to the upper layer, the learning rate of the
Transformer’s encoder and decoder decreases in turn, and the
Adam optimizer with weightdecay =1e-3 was used. We al-
so applied three regularization methods: 10% dropout on every
attention matrix and weight in Conv1D, layer normalization be-
fore every multi-head attention and Conv1D, and label smooth-
ing with a penalty of 0.1.

4. Results
4.1. Unsupervised pre-training
Our baseline system is the Tranformer-CTC hybrid structure
used in [7], except that the position-wise fully-connected feed-
forward network layers are replaced with Conv1D layers, which
has been proven to achieve state-of-the-art performance in al-
l current end-to-end speech recognition systems. In addition,
we conducted two representative benchmarks: the first one is a
TDNN-HMM model optimized with the lattice free maximum
mutual information (LF-MMI) objective, the second one is a
LSTM-attention model with CTC and CE objectives. We al-
so conducted two unsupervised pre-training methods named M-
PC [20] and APC [19] and fine-tuned on the same fine-tuning
datasets.

We first conducted experiments with SPC and TPC using
only AISHELL-1 training set as pre-training data. The results
listed in Table 2 show that, compared to the baseline, 0.8% rel-
ative CER reduction is obtained with only SPC pre-training or
both SPC and TPC pre-training, 0.5% with TPC pre-training .
This indicates that the our proposed pre-training strategies are
useful even without any additional data.

To further verify the effects of various amounts of pre-
training data size on the fine-tuning results, we first merged
THCHS30 and AISHELL-1 training set as a new pre-training
dataset. The results listed in Table 2 show that using SPC
alone achieves 6.51% CER, while using TPC alone further re-
duces CER to 6.41%. So, for a small amount of additional
pre-training data, TPC is more useful than SPC. We further in-
creased the pre-training data by combining AISHELL-1 train-
ing set, THCHS30, and Chinese500 to create a new pre-training
dataset called Combine. The results show that CER decreased
over the baseline relatively by 5.9% using only TPC, 7.0% us-
ing only SPC, and 7.3% using both SPC and TPC. We find that
when there is more pre-training data, SPC plays a more impor-
tant role.

5008



Table 2: The test set CER(%) of AISHELL-1 with different pre-
training strategies and pre-training data size

Model Strategy Unsupervised Pre-training Data Size CER(%)
TDNN-hybrid [32] − − 7.51
LSTM enc + LSTM dec [5] − − 8.10
LSTM enc + LSTM dec [5] APC Combine(681 hours) 7.70
Transformer-FNN [20] MPC Combine(681 hours) 6.25

Transformer-FNN [7] − − 6.70
Transformer-Conv1d − − 6.60
Transformer-Conv1d-MTSL − − 6.50

Transformer-Conv1d SPC AISHELL-1(151 hours) 6.55
Transformer-Conv1d TPC AISHELL-1(151 hours) 6.57
Transformer-Conv1d SPC+TPC AISHELL-1(151 hours) 6.55
Transformer-Conv1d-MTSL SPC+TPC AISHELL-1(151 hours) 6.40
Transformer-Conv1d SPC AISHELL-1+THCHS30(181 hours) 6.51
Transformer-Conv1d TPC AISHELL-1+THCHS30(181 hours) 6.41
Transformer-Conv1d SPC+TPC AISHELL-1+THCHS30(181 hours) 6.41
Transformer-Conv1d-MTSL SPC+TPC AISHELL-1+THCHS30(181 hours) 6.33
Transformer-Conv1d SPC Combine(681 hours) 6.14
Transformer-Conv1d TPC Combine(681 hours) 6.21
Transformer-Conv1d SPC+TPC Combine(681 hours) 6.12
Transformer-Conv1d-MTSL SPC+TPC Combine(681 hours) 5.90
Transformer-Conv1d-MTSL SPC+TPC Combine(681 hours)+AISHELL-2(681 hour text) 5.91

4.2. Effects of multi-task semantic knowledge learning

The results listed in Table 2 indicate that the proposed multi-
task semantic knowledge learning is beneficial for CER reduc-
tion even without unsupervised pre-training. We obtained the
best CER for AISHELL-1 test set: 5.9% when we used our pro-
posed unsupervised pre-training strategies with the Combine
dataset as the pre-training data and with the integration of MT-
SL, which achieved 10.6% reduction for CER. We conducted
APC and MPC with the same unsupervised pre-training data
set, and the CER of AISHELL-1 only reduced by 5.3% and
4.9% respectively, which indicates that our methods are better
than MPC and APC using the same unsupervised pre-training
data size. We owe the effects of multi-task semantic knowl-
edge learning to the fact that time and frequency masking has a
similar effect to dropout [33], which prevents overfitting in the
training set. In addition, the mask strategies of SPC for input
features is similar to SpecAugment [34] , which can achieve the
effect of data augmentation and improve the generalization of
speech recognition systems. Finally, since the two mask strate-
gies are equivalent to introduce some noise to input features,
the reconstruction loss strengthens the anti-noise performance
of the Transformer’s encoder.

4.3. Randomness of unpaired data
In order to prove the effectiveness of our strategies are not due
to some inherent connections in the pre-training data(originally
paired), we used the speech data of Combine dataset to pre-
train SPC and used the same-scale text of AISHELL-2, which
is not paired with the Combine dataset, to pre-train TPC. The
results show that we can still achieve the similar results as our
best results, which indicates that our strategies are useful for
arbitrary unpaired data.

4.4. Low-resource case
To prove that our proposed unsupervised pre-training strategies
and fine-tuning method are still effective in low-resource case,
we used Combine and LibriSpeech datasets to perform unsu-
pervised pre-training using TPC and SPC strategies, and then
fine-tuned on the 50-hour AISHELL-1 dataset and Tedlium2
dataset with MTSL, respectively. As shown in Table 3, the
CERs of AISHELL-1 and Tedlium2 have been reduced rela-
tively by 20.3% and 17.8%, which indicates that our proposed
methods are able to learn useful semantic information from a
large amount of unpaired speech and text data so as to improve
the performance of low-resource speech recognition systems.

Table 3: The test set CER(%) of AISHELL-1 and Tedlium2
Dataset in low-resource case

Fine-tuning Dataset Pre-training Data Size (hours) CER(%)
AISHELL-1(50 hour) − 15.3
AISHELL-1(50 hour) Combine(681 hours) 12.2
AISHELL-1(50 hour) LibriSpeech(960 hours) 14.6
Tedlium2(50 hours) − 20.8
Tedlium2(50 hours) LibriSpeech(960 hours) 17.1

4.5. Cross-lingual case
For some low-resource languages, we may not have enough
data for pre-training. Inspired by [35], we assume that SPC
pre-training in other languages is also helpful for fine-tuning
on Mandarin dataset, so we used LibriSpeech dataset to pre-
train the SPC model and then fine-tuned on the low resource
AISHELL-1 set. As we can see from Table 3 that CER de-
creased relatively by 4.6% over the baseline, which indicates
that there are some commonalities between speech in differen-
t languages. We attribute this improvement to some phonemic
features shared between different languages at a certain level.

4.6. Loss and ACC
We observed the effectiveness of the proposed pre-training s-
trategies for model convergence and accuracy improvement.
The loss and the accuracy rate (ACC) curves are shown in Fig.3.
The curve ending with std represents the baseline without pre-
training, while the curve ending with Com represents the case
where the pre-training strategies are used with the Combine
data set. We can find that the pre-training strategies proposed
in this paper provide a better initial position for model training,
so that the model converges faster, and the accuracy increases
faster. It’s obviously that rich acoustic and linguistic knowledge
obtained from pre-trained SPC and TPC models benefits down-
stream automatic speech recognition (ASR) tasks.

Figure 3: Loss and ACC curves with and without our proposed
methods.

5. Conclusions
In this paper, we propose two unsupervised pre-training strate-
gies, named speech predictive coding (SPC) and text predictive
coding (TPC). These strategies use a large amount of unpaired
speech and text data for pre-training, and provide rich acous-
tic and linguistic semantic information for downstream tasks.
We also propose a new semi-supervised fine-tuning method,
named multi-task semantic knowledge learning, which helps
Transformer to strengthen the learning capability of semantic
knowledge during the fine-tuning process. Through our unsu-
pervised pre-training strategies and the fine-tuning method, the
performance of Transformer-based speech recognition system
is improved, which is suitable for the low-resource and cross-
lingual speech recognition applications.
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