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Abstract 
This paper looks in more detail at the Interspeech 2019 
computational paralinguistics challenge on the prediction of 
sleepiness ratings from speech. In this challenge, teams were 
asked to train a regression model to predict sleepiness from 
samples of the Düsseldorf Sleepy Language Corpus (DSLC). 
This challenge was notable because the performance of all 
entrants was uniformly poor, with even the winning system 
only achieving a correlation of r=0.37. We look at whether the 
task itself is achievable, and whether the corpus is suited to 
training a machine learning system for the task. We perform a 
listening experiment using samples from the corpus and show 
that a group of human listeners can achieve a correlation of 
r=0.7 on this task, although this is mainly by classifying the 
recordings into one of three sleepiness groups. We show that 
the corpus, because of its construction, confounds variation 
with sleepiness and variation with speaker identity, and this 
was the reason that machine learning systems failed to 
perform well. We conclude that sleepiness rating prediction 
from voice is not an impossible task, but that good 
performance requires more information about sleepy speech 
and its variability across listeners than is available in the 
DSLC corpus. 
Index Terms: Sleepiness, Voice, Machine Learning, 
Paralinguistics 

1. Introduction 
The 2019 Computational Paralinguistics challenge [1] 
included a continuous sleepiness rating prediction task based 
on the Düsseldorf Sleepy Language Corpus (DSLC). In this 
challenge teams were asked to build a machine learning 
system to predict self-ratings of sleepiness of speakers from 
short audio excerpts of their speech. The ratings were on a 
scale of 1-9 using the Karolinska Sleepiness scale (KSS) [2] 
varying between “extremely alert” to “very sleepy”. 
Performance of the systems reported in the challenge were 
very poor, with the winning system only achieving a 
correlation of r=0.37 with the human ratings. Table 1 
summarises some of the different systems and performance 
figures. 

The poor performance of machine learning systems at this 
task demands explanation. Is it really the case that sleepiness 
ratings cannot be predicted accurately from speech? Are the 
feature representations of the signals used by the systems 
inadequate in some way? Is this a task for which machine 
learning is not suited? Are there problems with the audio or 
the labelling of the corpus?  

The outcome of the 2019 sleepiness challenge seems 
particularly poor when compared to the 2011 sleepiness 
challenge [3]. In 2011 the challenge was to classify speech 
recordings into sleepy vs non-sleepy, using KSS ratings of 7 

and below as non-sleepy, and 8 and above as sleepy. In that 
challenge the baseline systems achieved an accuracy of about 
70%, while a later study using the same speech data and task 
achieved a classification accuracy of over 80% [4]. Could the 
failure of the 2019 challenge be because of the switch from a 
classification task to a regression task? 

In this paper we investigate the DSLC corpus in more 
detail. Our goals are to understand the reasons behind the poor 
performance of machine learning systems for predicting 
sleepiness ratings from speech using these data. The outcomes 
should be useful in building better systems for assessing 
sleepiness which may be useful in detecting the fatigue of 
operators in safety-critical jobs. 

In section 2 we describe the corpus and how the reference 
ratings were obtained. In section 3 we present the results of a 
new perceptual experiment in which we ask a panel of 
listeners to provide sleepiness ratings for 90 recordings from 
the corpus constituting a new test set. We look at the 
performance of human listeners on labelling sleepiness, and 
discuss what that tells us about difficulty of the task. In section 
4 we perform a number of statistical analyses of the corpus to 
understand why machine learning methods trained on the 
corpus performed so poorly. In section 5 we discuss the 
implications of the findings for future work in sleepiness 
rating prediction. 

Table 1.Published performance figures for machine 
prediction of sleepiness ratings in the Interspeech 

2019 challenge 

System Correlation on 
Development Set 

OpenSMILE + SVR (Baseline) [1] 0.251 
Bag of audio Words + SVR (baseline) [1] 0.269 
Deep Learning autoencoder + SVR 
(baseline) [1] 

0.261 

OpenSMILE + SVR [5] 0.327 
Fisher Vectors + SVR [5] 0.355 
Bag of audio words + SVR [5] 0.300 
OpenSMILE+Fisher Vector fused [5] 0.367 
OpenSMILE+BoAW+Fisher Vector 
fused [5] 

0.368 

2. Sleepy Language Corpus 
The Düsseldorf Sleepy Language Corpus was recorded at the 
Institute of Experimental Psychophysiology, Düsseldorf, and 
the Institute of Safety Technology, University of Wuppertal, 
Germany. The corpus used in the Interspeech 2019 challenge 
[1] included recordings from 915 German speakers (364 
females, 551 males, age from 12 to 84 years, mean age 27.6 ± 
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11.0 years). The recordings of different reading passages and 
spontaneous speaking tasks were made in quiet rooms with the 
tasks presented on a computer in front of the participants. 
Audio files were recorded at 44100 samples/sec and down-
sampled to 16000 samples/sec, with 16-bit quantisation. A 
session of one subject lasted from 15 minutes to 1 hour and 
recordings took place at different times of day between 6am 
and midnight. Each participant had to rate their sleepiness on 
the KSS, and ratings were also made by two expert raters. The 
scores from self-assessment and observers were averaged to 
form the reference sleepiness values. It is not stated in the 
available documentation exactly how the averaging was 
performed, but in a previous study by the creators of the 
corpus [6], the expert raters were present during the recording 
and made their ratings contemporaneously, quote: 

“A well established, standardised subjective sleepiness 
questionnaire, the Karolinska Sleepiness Scale (KSS), 
was used by the subjects (self-assessment) and by the 
three assistants who had supervised the experiments, 
using all available information (audio/video/context); 
they had been formally trained to apply a standardised 
set of judging criteria.” [6] 
In total there were 16,462 recordings from the 915 

speakers, but in this investigation we only have access to 
labels for the training subset (5,546 recordings) and the 
development subset (5,328 recordings). 

3. Perceptual Experiment 
Ninety-nine recordings from the development subset of the 
corpus were used in a perceptual experiment. Recordings were 
evenly selected across the different ratings, with 1 recording 
of each rating level used for training listeners and 10 
recordings of each rating level used for test. 26 English-
speaking listeners took part using a web interface, see Fig.1. 
Each listener rated each of the files on a scale of 1 to 9 using 
the Karolinska sleepiness rating scale rubric. 

 
Figure 1. Listening Test Screenshot 

The raw ratings for each listener were first normalised to zero 
mean and unit variance to remove some variability across 
listeners in the way in which they used the scale. The 
normalised responses for all listeners for all recordings are 
shown in Fig.2. The violin plot shows the distribution of 
normalised scores for each rating level used in the test data. 
Looking at raw scores alone, there is much variation in listener 
score for every rating level, with the overall correlation being 
only r=0.249. In terms of inter-rater agreement, Kendall’s 
coefficient of concordance is only 0.112, indicating 
considerable diversity of opinion among the raters. 

 

 
Figure 2. Normalised listener ratings of speech files 

We can use the “wisdom of the crowd” to refine the listener 
ratings by averaging normalised ratings across all 26 listeners. 
Fig.3 shows the mean normalised listener responses for each 
recording as a function of rating label. Each dot on this plot 
represents one recording. The boxes show the entire range, the 
inter-quartile range and the median value of the score 
distribution. The averaged listener ratings show a much higher 
correlation with the supplied ratings than individuals, with 
r=0.72. Variation of the labelling was assessed using 
Friedman’s rank sum test, which shows significant variation in 
responses across ratings (χ2=114, df=8, p <0.001). However, a 
post-hoc analysis of the Friedman test shows that there were 
only three significantly different rating groups: 1 | 2,3,4,5,6,7 | 
8,9. This is visually apparent in Fig.3. 
 

 
Figure 3. Mean normalised listener ratings per 

recording 

What do we learn from this perceptual experiment? Firstly, 
this is not an easy task for untrained listeners. Inter-rater 
reliability was low, and only the average score had reasonable 
correlation with the supplied ratings. This was despite the fact 
that the self-ratings had been smoothed by averaging with the 
perceived judgments of expert listeners, which might have 
been expected to bias the ratings towards the auditory 
characteristics of the speech. Secondly, there is no support for 
the hypothesis that listeners can use the 1-9 rating scale 
effectively. The data seem to show that all listeners were 
doing was dividing the recordings into a three-way groupings 

4572



of aroused/normal/sleepy. Interestingly, the most sleepy group 
combines ratings 8 & 9 which matches the threshold used in 
the 2011 sleepiness challenge [3], where ratings 7 and below 
were classed non-sleepy, and ratings 8 and above were classed 
sleepy. 

We can use the listener responses to simulate a 
classification task into sleepy vs. non-sleepy. Using a 
threshold of 7.5 for the ratings and a threshold of 0.26 for the 
mean listener response, we obtain the classifications shown in 
Table 2. While performance here is extremely high, it must be 
remembered that the corpus ratings may themselves be biased 
towards human listener perceptions. 

Table 2 Post-hoc sleepy/non-sleepy classification 
using listener responses 

 Non-sleepy Sleepy 

Non-sleepy 68 2 

Sleepy 2 18 

Accuracy=95.6% UAR=93.6% 
 
In this section we have explored the behaviour of human 
listeners on the sleepiness rating task on the test set. In the 
next section we will explore the characteristics of the whole 
corpus to identify the causes of the poor machine learning 
performance. 

4. Corpus Analysis 
In the light of the good performance of human listeners at 
predicting sleepiness, the poor performance of machine 
learning systems could be due to a number of different factors: 
(i) differences in the way in which sleepiness affects the voice 
across speakers, (ii) differences in the make-up of the different 
partitions of the corpus, so that what is learned from one is 
inapplicable to the other, (iii) other interactions between 
speakers, ratings and corpus partitions. 

Speaker labels are not available for the corpus, yet we 
know that there are only 915 speakers in the 16462 recordings, 
so multiple recordings must have been made of each speaker. 
It is also reasonable to assume that the speakers in the three 
corpus partitions sets are disjoint, which means that there are 
about 300 speakers and about 18 recordings/speaker on 
average in each partition. 

The first task is to check the degree of overlap between the 
train and development partitions in terms of speakers. We do 
this in an informal way at first by projecting feature analyses 
of the recordings into 2 dimensions and colouring them by 
whether they are in the training or development set.  

For data representation we use x-vectors [7]. X-vectors are 
deep neural network embeddings learned from a speaker 
recognition task. They represent the state of a hidden layer in a 
neural network designed to predict a probability distribution 
over a set of speakers from an audio feature representation. In 
this task we use the x-vector system available as part of the 
Kaldi toolkit, which was trained on  augmented Switchboard, 
Mixer 6, and NIST SRE corpora (https://kaldi-
asr.org/models/m3). This delivers 512 dimensional vectors 
from each audio recording. 

Figure 4 shows the projection of the x-vectors into 2 
dimensions using the tSNE method [8], using different colours 
for the training and development partitions. The tSNE method 
aims to preserve in the lower dimensional space the local 
clustering found in the original high dimensional space. What 
can be clearly seen in the figure is that there are many small 
clusters which are in the main all from the training set or all 
from the development set. There are few clusters which seem 
to contain both red and blue dots. We conclude that, as 
expected, the speakers used in the training data and in the 
development data partitions are different. 

 
Figure 4. 2D projection of x-vector features, 

red=training set, blue=development set 

Figure 5 shows a similar analysis, but this time coloured 
according to sleepiness rating. What is interesting here is that 
the clusters - which we believe represent different speakers - 
only seem to present a small range of sleepiness ratings (small 
range of colours). That is, we conclude that the ratings 
provided by each speaker did not vary much across the 
multiple recordings found in the corpus. 

 
Figure 5. 2D projection of x-vector features coloured 

by sleepiness ratings 
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Next, we look at how sleepiness ratings are distributed 
through the x-vector space in the training and development 
sets separately. To do this we perform a linear discriminant 
analysis (LDA) on the x-vectors in the training partition using 
the ratings as labels. Then using the identified directions of the 
discriminants we project the training data and the development 
data to two dimensions using tSNE. Figure 6 shows the 
projections for the two partitions. What is very clear from the 
figure is that the LDA discriminants do a good job of 
separating out the different ratings groups for the training data 
(from which they were calculated), but those same 
discriminants are much worse at separating the ratings groups 
found in the development data. 

 In this section we have shown important differences 
between the training and development partitions in the sleepy-
language corpus. It appears that, as expected, there are 
different speakers in the two partitions, but in combination 
with that, there is little variation in sleepiness ratings given by 
each speaker. This means that sleepiness and speaker identity 
are fundamentally linked in the corpus, and that any simple 
approach to analysis of sleepiness in the training partition will 
inevitably turn into a speaker recognition system. Such a 
system will then perform poorly on a development partition 
containing different speakers. 

5.  Conclusions 
This goals of this study were to find an explanation for the 

poor performance of machine learning systems for predicting 
sleepiness ratings from speech in the DSLC, and to suggest 
directions for future work. 

Through the analysis of the corpus itself in section 4, we 
have seen that a major problem is the confounding of speaker 
identity and sleepiness ratings in the corpus. Each corpus 
partition contains different speakers, and each speaker only 
produced a narrow range of sleepiness ratings. This makes it 
very hard to learn features of sleepiness from the training set 
without at the same time learning features of identity. When 
those features are exploited by the prediction model, they may 
work well to measure similarity between speakers in the test 

set to speakers in the training set, but it is not necessarily the 
case that those similar speakers have similar sleepiness 
ratings. 

While we might conclude from this analysis that the 
corpus itself is fundamentally compromised for machine 
learning, the result of the human listening experiment 
described in section 3 is much more encouraging. The 
listeners as a group were able to separate the recordings in the 
test set into three groups on the basis of sleepiness. When 
applied to the binary task of distinguishing sleepy from non-
sleepy, accuracy was over 90%. It is clear that the listeners as 
a group had access to knowledge that helped them solve this 
problem without needing to learn from the training set. That 
knowledge might be in two forms: knowledge about how 
sleepiness changes the way in which speakers speak, and 
knowledge about how speech varies across individuals. 
Human listeners are likely to be highly attuned to changes in 
the voice relevant for the observation of speaker state. But not 
only this, they are able to exploit that knowledge without 
previous exposure to the speaker. The machine learning 
systems for predicting sleepiness that were submitted to the 
challenge were limited by the fact that the only knowledge 
they had of variability within and across speakers came from 
the DSLC training set – and that variation in sleepiness and 
identity were confounded in this corpus. 

Future work in this area will benefit greatly from data 
analysis methods that separate out characteristics of identity 
and sleepiness in voice. This type of analysis could be based 
on the kind of factor analysis used in speaker recognition to 
separate out speaker identity from speaking environment. 
However it will require speech corpora that are more varied 
within speakers; and with labelling for speaker as well as 
labelling for sleepiness. 
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Figure 6. 2D tSNE projections of LDA projections of x -vector features, coloured by sleepiness rating 
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