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Abstract 
Depression disorders are a major growing concern worldwide, 
especially given the unmet need for widely deployable 
depression screening for use in real-world environments. 
Speech-based depression screening technologies have shown 
promising results, but primarily in systems that are trained 
using laboratory-based recorded speech. They do not generalize 
well on data from more naturalistic settings. This paper 
addresses the generalizability issue by proposing multiple 
adaptation strategies that update pre-trained models based on a 
dilated convolutional neural network (CNN) framework, which 
improve depression detection performance in both clean and 
naturalistic environments. Experimental results on two 
depression corpora show that feature representations in CNN 
layers need to be adapted to accommodate environmental 
changes, and that increases in data quantity and quality are 
helpful for pre-training models for adaptation. The cross-corpus 
adapted systems produce relative improvements of 29.4% and 
17.2% in unweighted average recall over non-adapted systems 
for both clean and naturalistic corpora, respectively.  
Index Terms: Depression detection, deep learning, domain 
adaption, environmental noise, mental health, smart devices. 

1. Introduction 
Depression is a common and costly condition, affecting 10%-
15% of the global population [1]. To help ease this serious 
health concern, an objective, passive, ubiquitous, convenient, 
and cost-effective device for capturing cognitive-behavioral 
information would be a compelling tool for research and 
clinical practice [2–4]. Currently, over 80% of US adults own 
smart devices (e.g. phone, tablet, watch) [5], speech signals 
from which could be used for depression screening. This 
provides an unprecedented opportunity to expand access to 
much needed medical help for depressed individuals. Although 
research to date has shown considerable potential [5–8], this 
area remains challenging and relatively understudied. 

Speech production involves complex cognitive planning 
and motoric actions that are often impeded by depression in a 
variety of ways [4], e.g. muscle tension disturbances and 
cognitive impairments [9], causing articulatory incoordination 
[10] and abnormal phoneme rates [11]. Accordingly, a few 

effective frameworks have been proposed to exploit speech 
articulation-based information for depression detection, such as 
vowel space area [12], speech landmarks [13, 14],  vocal tract 
coordination (VTC) features [10, 15], and FVTC-CNN (Full 
VTC-Convolutional Neural Networks) [16].  

The effectiveness of features generated from these 
frameworks can be greatly reduced when applied to cross-
corpus data. Often a particular feature set, or model, that 
performs well on one dataset may generalize poorly to others, 
especially if there is a mismatch in how the data were generated. 
This happens, for example, when one data set is collected in real 
life environments and another is collected in a controlled 
laboratory setting. This challenge of cross-corpus evaluation is 
a common one in affective computing, and often results in close 
to chance-level performance on mismatched datasets [17–20].  

In this paper, we investigate domain adaptation based on a 
deep learning framework to bridge the gap for cross-corpus 
experiments. We also compare adaptation from a large dataset 
with more variable ground truth quality with adaptation from a 
small dataset containing high quality ground truth. 

2. Related Work 
Automatic assessment of depression from human voice has 
gained increasing interest recently [21–23]. Many systems have 
been proposed, but there has been a recent shift towards deep 
learning approaches due to strong depression classification 
/prediction results [24–25]. To date, the majority of studies have 
utilized clean speech recordings collected in controlled 
laboratory settings. By contrast, depression screening ‘in-the-
wild’ (i.e. on smartphones in naturalistic environments) remains 
challenging and relatively less explored [28]. Consequently, 
depression screening systems built using clean speech data are 
less likely to generalize well ‘in-the-wild’. This weakness in 
generalization is due to a wide spectrum of variability in real 
life data collections (e.g. demographics, speech tasks, recording 
devices/environments, and annotation standards).  

One feasible solution to the cross-corpus discrepancy is 
domain adaptation. The idea originates from transfer learning 
[27], and is not uncommon in speech-related tasks such as 
universal background models in speaker recognition [28]. 
Recently, domain adaptation based on deep learning has 
attracted increasing attention [29–30], because deep learning is 
effective in learning useful feature representations that are 
transferrable across different tasks, e.g. SoundNet in speech, 
AlexNet in image, and BERT in text [29–33].  

There have been a few studies investigating generalization 
and transferability for domain adaptation [34–38]. For instance, 
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it was found that deeper layers in CNNs can capture more task-
specific information [33], and have increased linear separability 
than preceding layers [36]. However, the way in which 
transferrable information is learned by deep learning systems 
remains relatively unexplored in speech-related applications, 
including depression detection. Another under-studied area for 
adaptation is the trade-off between quantity and quality of data 
for pre-training. Quantity-quality trade-offs are to some extent 
inevitable in depression detection, where high quality clinically 
validated data are usually small in size and an ever-increasing 
amount of data can be collected on smartphones. The latter data 
often contains noisy speech data and poor quality labels. 

3. Methods 
3.1. System Overview 

This study investigates domain adaptation for depression 
detection using the FVTC-CNN (full vocal tract coordination – 
convolutional neural networks) framework [16]. FVTC-CNN 
consists of two parts, i.e. an image-like FVTC matrix (Fig. 1) 
and a dilated CNN. The FTVC matrix consists of delayed auto- 
and cross-correlations from feature contours over time (e.g. 
formants). Those correlations were found to be associated with 
motor incoordination of vocal tract activities [10]. As shown in 
Fig. 1, a dilated CNN is used to learn the image-like full VTC 
matrix, which is calculated per audio file. This framework is 
used for three reasons: (1) it captures speech motor coordination 
information that could be more robust to various noise and 
handset variability, and hence more performant in naturalistic 
environments [16]; (2) the deep learning framework has higher 
feasibility and potential for domain adaptation than non-deep 
learning frameworks; and (3) the framework contains a 
straightforward structure, which allows interpretability for 
cross-corpus experiments.  

Consider two datasets: 𝐷! and 𝐷", each divided into train, 
development and test partitions, i.e. 𝐷#$%&#', 𝐷#()*, and  𝐷#$)+$, 
where 𝐷# ∈ {𝐷!, 𝐷"}. The domain adaptation follows two steps:  

i. A pre-trained model ℳ#  is built from one corpus 𝐷#  by 
training on 𝐷#$%&#' and then optimizing on 𝐷#()*. 

ii. Weights in the pre-trained model ℳ# are then updated on 
the second corpus 𝐷, by adapting on the training partition 
𝐷,$%&#', leading to ℳ#→,. The frozen and adapted layers 
in CNN were controlled by the proposed adaptation 
strategies. The updated model ℳ#→,  is optimized on 
𝐷,()*, and tested on the test partition 𝐷,$)+$.   

This adaptation approach is beneficial, because the resultant 
model ℳ#→, benefits from additional training data, while also 
containing information from different datasets, which aids in 

mismatch compensation. For instance,  ℳ#→,  can be 
knowledgeable about both clean high-quality depressed speech 
and noisy speech data collected from various devices in 
naturalistic environments. Also, it is observed that ℳ# offers a 
good starting point for training a model on other datasets. This 
is important as depression corpora are often unbalanced and 
relatively small in size, leading to a higher risk of achieving 
local minima due to poor initializations.  

3.2. Proposed Adaptation Strategies 

In the dilated CNN framework shown in Fig. 1, it is reasonable 
to expect that not all the layers are suitable for adaptation, since 
some layers may carry similar depression-related information 
across corpora. Therefore, it is beneficial for these layers to 
remain frozen during adaptation. However, how best to perform 
domain adaptation remains unclear. In this study, we propose 
three adaptation strategies, namely layer-wise adaptation and 
two types of accumulative adaptation, FirstN and LastN. 

• Layer-wise adaptation: a single layer with trainable 
weights is updated. 

• FirstN adaptation: the first N layers are jointly adapted. 
• LastN adaptation: the last N layers are jointly adapted. 

In FVTC-CNN, there are eight trainable layers of interest, 
i.e., six convolutional layers (i.e., Conv-1, Conv-2, …, Conv-6) 
and two fully connected layers (i.e., FC-1 and FC-2). The batch 
normalization layers are kept frozen during adaptation based on 
preliminary findings of no gain, as in [37]. The ‘Conv’ layers 
learn feature representations, whereas ‘FC’ layers learn 
classification models. This raises an interesting question 
regarding the CNN substructure: should we update the weights 
for only the feature representation or for only the classifier 
models? This question will be answered by investigating the 
proposed adaptation strategies. 

 Layer-wise adaptation examines the effectiveness of 
adapting particular informative layers that mitigate mismatches 
between different corpora. FirstN adaptation examines the 
cumulative effect of levels of feature learning. LastN adaptation 
examines the cumulative effect of levels of classifier learning. 
Investigating the three proposed adaptation strategies can 
provide novel insights into to cross-corpus generalizability. 

4. Results 
4.1. Experimental Settings 

The experiments were conducted on two corpora recorded in 
very different environments: SH2-FS (Free Speech) [8], [14] 
and Distress Analysis Interview Corpus – Wizard of Oz (DAIC-
WOZ) [38]. The SH2-FS corpus comprises audio recordings in 
naturalistic environments (e.g., at home, workplace, vehicle), 

 
Figure 1: The FVTC-CNN structure for exploiting vocal tract coordination, reproduced from [16]. Conv-1 to Conv-4 capture vocal 
tract coordination (represented by delayed correlations of feature contours, e.g. formant contours across time) at different time scales, 
Conv-5 and Conv-6 learns more abstract depression-specific information, and FC-1 and FC-2 perform classification modelling.  
Conv-1 to Conv-6 and FC-1, 2 can be adapted separately or collectively. The numbers of filters or neurons at each layer are annotated. 
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along with self-reported Patient Health Questionnaire (PHQ-9) 
scores gathered through an interactive Android™ smartphone 
app. This corpus has the same training and testing partition as 
per [13]: 444 files (438 speakers) for training and 130 files (128 
speakers) for testing. There are 74 and 23 depressed speakers 
in the training and test data partitions respectively as a result of 
using a PHQ-9 threshold of 10 (suggested by [39]).  

The DAIC-WOZ is a laboratory-based dataset recorded 
during interviews with a virtual human agent via high-quality 
microphones with minimal background noise. Each interview 
produced up to 20 minutes of speech for each participant, and 
an accompanying clinically validate binary label indicating 
whether the participant was depressed or healthy. The database 
has 107 speakers for training and 35 speakers for testing [22]. 
The average speech utterance durations were 20.5 ± 10.2s for 
SH2-FS and 446.9 ± 227.0s for DAIC-WOZ. For both datasets, 
20% of the training data were held-out as a development set for 
optimizing model training or adaptation. 

The input to the dilated CNN, i.e. the FVTC matrix [16], 
consists of delayed correlations calculated from contours of 
short-term acoustic features for each audio recording. In this 
study, we employed four sets of acoustic features, namely 3 
formants, 13 spectral centroid frequencies (SCF) [40], 16 
MFCCs and 16 delta MFCCs (dMFCC). Unvoiced frames were 
dropped using voice activity detection for both corpora. All 
correlations were centered and scaled to unit variance, based on 
normalization coefficients learnt from the training set. 

As for the dilated CNN structure and hyperparameters, we 
adopted the same architecture as per [16], namely the Adam 
optimizer, batch size was set to 64 for both corpora. The dilation 
rates 𝑛  were set to 1, 3, 7, 15 in the first four parallel 
convolutional layers (i.e. Conv 1 to Conv 4) with filter size of 
15×1. Conv-5 and Conv-6 adopt filter size of 3×1 with a stride 
of 2. Batch normalization, max pooling and dropout were 
applied as shown in Fig. 1. The seed value was set to 0 for all 
experiments. Both training and adaptation was trained up to 200 
epochs with early stopping based on the top average F1 score 
(of two classes) on the development set. Class weights were 
empirically set to alleviate the class imbalance issue during 
training. Dropout rate was fixed to 0.3 and 𝜆  for ℓ2 
normalization was set to 0.01 unless stated otherwise. 

Classification performances were evaluated using 
Unweighted Averaged Recall (UAR) ∈ [0,1]  calculated for 
speakers, which is a standard metric to evaluate unbalanced 
classification problems (higher UARs are better).  

4.2. Improved Results using Proposed Domain Adaptation 

The first experiment evaluates the usefulness of domain 
adaptation by comparing three different cases, i.e., within-
corpus experiments and cross-corpus experiments without and 
with adaptation. The learning rate was selected from {1e-3, 1e-
4} for pre-training models and from {5e-3, 5e-4} for adaptation 
in this experiment, because the number of trainable parameters 
varies for adapted layers, feature types, and adaptation 
strategies. It was observed that, as expected, for layer-wise 
adaptation (i.e. less parameters), large learning rates are needed 
whereas for cumulative layer adaptation, smaller learning rates 
often gave improved performances. Models were trained and 
tested either on the same datasets (within-corpus) or on 
different datasets (cross-corpus). For the adapted cases, eight 
possible layer combinations (i.e. from Conv-1 to FC-2) were 
tried, and the top results were selected. 

Fig. 2 shows that adaptation consistently yielded 
(sometimes significant) improvements over the within-corpus 

and cross-corpus (without adaptation) cases. This lends support 
to the concept of adaptation, with the biggest gains observed for 
adapt/test on DAIC, although there is no clear adaptation 
strategy winner. Also, layer-wise adaptation performed better 
than or on par with FirstN and LastN on DAIC-WOZ, which is 
however not true for SH2-FS. This suggests that less adaptation 
is needed for DAIC-WOZ. 

4.3. Probing Intermediate Results of the Proposed 
Adaptation Strategies 

This experiment evaluates the respective contributions of 
layer(s) during adaptation to cross-corpus generalizability (i.e. 
which layers need adaptation for better performance?), shown 
in Fig. 3. For layer-wise, each layer was updated separately. For 
FirstN (or LastN), the current layer and its preceding (or 
following) layers were updated.  

Formants and dMFCC were chosen partly due to their 
strong results in Fig. 2, and partly because they represent two 
different cases during adaptation: dMFCC tend to be sensitive 
to channel variability, whereas formants are not. As shown in 
Fig. 3, adaptation involving Conv-5, Conv-6 and FC-1 tended 
to produce better performances over other layers for SH2-FS, 
whereas adaptation involving Conv-1, Conv-3, and Conv-5 is 
beneficial for DAIC-WOZ, albeit slight variations for formant 
and dMFCC. This implies an interesting insight that feature 

 

 
Figure 3: UARs when adapting layer(s) using proposed 
adaptation strategies for both corpora.  

 

 
Figure 2: Comparison of the proposed adaptation strategies 
against systems without domain adaptation for both corpora. 
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representation needs to be re-learned to accommodate the 
environmental changes between clean and naturalistic datasets, 
but the emphasis is different depending on the pre-training 
datasets. If pre-trained on DAIC-WOZ (clean), adaptation of 
Conv-5 or Conv-6 is sufficient for SH2-FS, whereas if pre-
trained on SH2-FS (noisy), apart from Conv-5/Conv-6, detailed 
coordination information (i.e. from Conv-1 to Conv 4) should 
be also adapted for DAIC-WOZ.  

4.4. Impact of Amount of Data for Adaptation 

An important consideration during adaptation is how much data 
are needed for both training and adaption. To investigate this, 
the amount of training or adaptation data was varied from 20% 
to 100% (Fig. 4). We selected the adapted system that took 
formants or dMFCC for pre-training and updated Conv-5 due 
to their strong performances for both corpora. All the 
hyperparameters were identical to previous experiments. 

Results in Fig. 4 show that in general, more data, either for 
pre-training or adaptation, tended to yield better results for both 
datasets, as expected. One exception was for formants, where 
using more than 40% of the data from SH2-FS for pre-training 
did not aid system performances. This is also sensible because 
more noisy data or poorly administered labels (from SH2-FS) 
are not necessarily helpful when tested on DAIC-WOZ.  

4.5. Optimized Results Compared with Existing 
Results/Approaches 

This experiment compares the optimized results with existing 
results on the two adopted datasets. Instead of the fixed 
hyperparameters used in previous experiments, for the adapted 
FVTC-CNN results, a grid search was performed for three 
hyperparameters: pre-training learning rate from {1e-3, 5e-4, 
1e-4} (for better pre-trained models), adaptation learning rate 
from {1e-2, 5e-3, 1e-3, 5e-4, 1e-4} (which is crucial for 
optimized adaptation), dropout rate from {0.3, 0.4} (for 
regularization), alongside three adaptation strategies. Similarly, 
for non-adapted FVTC-CNN results (i.e. within-corpus and 
cross-corpus), grid search was done for three hyperparameters: 
batch size from {64, 128}, learning rate from {1e-2, 1e-3, 1e-4, 
1e-5} (for optimization), and dropout rate from {0.2, 0.3, 0.4}. 

Many interesting results can be observed from Table 1. For 
instance, almost all optimal results involve adapting 

convolutional layers, i.e. feature representation. Furthermore, 
similarly to Fig. 2, when adapting on DAIC-WOZ, layer-wise 
adaptation is preferred, whereas when adapting on SH2-FS, 
more layers (firstN) need to be adapted. This makes sense, since 
for the latter case, information related to the noisy conditions 
and handset variability needs to be learnt. An interesting insight 
can also be drawn from comparing formants and MFCCs in 
adapted FVTC-CNN: more layers need adaptation for MFCC 
due to its sensitivity to handset variability (i.e. †), whereas for 
formants, only the Conv-5 layer needs to be adapted (i.e. *). The 
adapted results outperform the non-adapted cases and most 
existing results, confirming the effectiveness of the proposed 
adaptation. The adapted systems yielded relative improvements 
of 17.2% and 29.4% in UAR over the best non-adapted cross-
corpus systems, and 3.0% and 11.4% over the best non-adapted 
within-corpus systems, for SH2-FS and DAIC respectively. 
Finally, the relatively strong results in the adapted systems for 
both datasets suggest that both quantity (SH2-FS) and quality 
(DAIC-WOZ) of data matter for pre-training models. 

5. Conclusions 
This study has investigated domain adaptation based on a deep 
learning framework to enhance cross-corpus generalizability 
for depression detection. Three different adaptation strategies 
were proposed to adapt individual or joint layers, which yielded 
a boost in performance over systems without adaptation. 
Further, contributions of intermediate CNN layers and impact 
of data needed for training/adaptation were studied, finding that 
it is important to re-learn the feature representation to 
accommodate environmental changes, and that adaptation 
benefits from more training data. Moreover, more layers need 
to be adapted when it comes to noisy conditions, whereas one 
adapted layer may be sufficient when it comes to clean 
conditions. As future work, this framework can be coupled with 
generative adversarial networks to learn environmental 
invariant features that are robust to noise and handset 
variabilities for speech-based depression detection. 
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Figure 4: Impact of data selection from 20% to 100% (i.e., 
using all data) of either training or adaptation partition on 
depression detection performances for both corpora.  

Table 1: Optimized adapted results compared with non-
adapted results and existing published results. F1 scores 
for depression (D) and healthy (H) were also presented. 
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 F1 (D/H) UAR F1 (D/H) UAR 
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eGeMAPS [13] 0.32/0.79 0.58 0.29/0.82 0.55 
acoustic [8]/[22] 0.33/0.74 0.59 0.41/0.58 0.64 
DepAudioNet [24] - - 0.52/0.70 0.77 
speech landmark [13] 0.47/0.78 0.73 0.86/0.97 0.91 
FVTC-CNN: 
best within-corpus 0.41/0.71 0.66{fmt} 0.63/0.89 0.79{fmt} 

best cross-corpus 0.32/0.78 0.58{dmfcc} 0.50/0.90 0.68{fmt} 
Adapted FVTC-CNN: 
Formants 0.46/0.85 0.68{*, conv-5} 0.62/0.91 0.75{*, conv-5} 

SCF 0.39/0.88 0.63{†, conv-4} 0.57/0.89 0.73{*, conv-1} 

MFCC 0.37/0.76 0.62{†, conv-2} 0.67/0.86  0.88{†, fc-1} 

dMFCC 0.40/0.77 0.65{†, conv-2} 0.67/0.91 0.80{*, conv-4} 
Optimized system configuration was mentioned in {}, in which ‘*’, ‘†’, 
‘‡’ denotes layer-wise, firstN, lastN adaptation. ‘fmt’ means formants. 

20% 40% 60% 80% 100%
Percentages of Selected Data

0.5

0.6

0.7
U

AR
Pre-train on DAIC, Adapt and Test on SH2-FS
Formants: select from train data
Formants: select from adapted data
dMFCC: select from train data
dMFCC: select from adapted data

20% 40% 60% 80% 100%
Percentages of Selected Data

0.5

0.6

0.7

0.8

U
AR

Pre-train on SH2-FS, Adapt and Test on DAIC-WOZ

4564



7. References 
[1] J. Walker et al., “The prevalence of depression in general hospital 

inpatients: a systematic review and meta-analysis of interview 
based studies,” Psychol. Med., vol. 48, no. 14, 2018. 

[2] J. F. Cohn, N. Cummins, J. Epps, R. Goecke, J. Joshi, and S. 
Scherer, “Multimodal assessment of depression from behavioral 
signals,” in Handbook of Multi-Modal Multi-Sensor Interfaces, 
Morgan and Claypool, 2017, pp. 113–155. 

[3] T. R. Insel, “Digital phenotyping: Technology for a new science 
of behavior,” JAMA - J. Am. Med. Assoc., vol. 318, no. 13, pp. 
1215–1216, 2017. 

[4] N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and 
T. F. Quatieri, “A review of depression and suicide risk 
assessment using speech analysis,” Speech Commun., vol. 71, pp. 
10–49, Jul. 2015. 

[5] D. Ben-Zeev, E. A. Scherer, R. Wang, H. Xie, Andrew, and T. 
Campbell, “Next-generation psychiatric assessment: using 
smartphone sensors to monitor behavior and mental health,” 
Psychiatr. Rehabil. J., vol. 38, no. 3, pp. 218–226, 2015. 

[6] K. K. Weisel, L. M. Fuhrmann, M. Berking, H. Baumeister, P. 
Cuijpers, and D. D. Ebert, “Standalone smartphone apps for 
mental health—a systematic review and meta-analysis,” npj Digit. 
Med., vol. 2, no. 1, pp. 1–10, 2019. 

[7] H. Hsin et al., “Transforming psychiatry into data-driven 
medicine with digital measurement tools,” npj Digit. Med., vol. 1, 
no. 1, pp. 1–4, 2018. 

[8] Z. Huang, J. Epps, D. Joachim, and M. C. Chen, “Depression 
detection from short utterances via diverse smartphones in natural 
environmental conditions,” in INTERSPEECH, 2018, pp. 3393–
3397. 

[9] M. Cannizzaro, B. Harel, N. Reilly, P. Chappell, and P. J. Snyder, 
“Voice acoustical measurement of the severity of major 
depression,” Brain Cogn., vol. 56, no. 1, pp. 30–35, 2004. 

[10] J. Williamson, T. Quatieri, and B. Helfer, “Vocal and facial 
biomarkers of depression based on motor incoordination and 
timing,” in Proceedings of the 4th International Workshop on 
AVEC, ACM MM, Orlando, FL, 2014. 

[11] A. C. Trevino, T. F. Quatieri, and N. Malyska, “Phonologically-
based biomarkers for major depressive disorder,” EURASIP J. 
Adv. Signal Process., vol. 2011, no. 1, p. 42, 2011. 

[12] S. Scherer, G. M. Lucas, J. Gratch, A. Rizzo, and L. P. Morency, 
“Self-reported symptoms of depression and PTSD are associated 
with reduced vowel space in screening interviews,” IEEE Trans. 
Affect. Comput., vol. 7, no. 1, pp. 59–73, 2016. 

[13] Z. Huang, J. Epps, and D. Joachim, “Investigation of speech 
landmark patterns for depression detection,” IEEE Trans. Affect. 
Comput., pp. 1–15, 2019. 

[14] Z. Huang, J. Epps, D. Joachim, and V. Sethu, “Natural language 
processing methods for acoustic and landmark event-based 
features in speech-based depression detection,” IEEE J. Sel. Top. 
Signal Process., vol. 14, no. 2, pp. 435–448, 2020. 

[15] J. R. Williamson, T. F. Quatieri, B. S. Helfer, G. Ciccarelli, and 
D. D. Mehta, “Vocal biomarkers of depression based on motor 
incoordination,” in Proceedings of the 4th ACM International 
Workshop on AVEC, ACM MM, 2013, pp. 41–47. 

[16] Z. Huang, J. Epps, and D. Joachim, “Exploiting vocal tract 
coordination using dilated CNNs for depression detection in 
naturalistic environments,” in ICASSP 2020 - 2020 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2020, pp. 6549–6553. 

[17] J. Gideon, M. McInnis, and E. Mower Provost, “Improving cross-
corpus speech emotion recognition with adversarial 
discriminative domain generalization (ADDoG),” IEEE Trans. 
Affect. Comput., pp. 1–1, 2019. 

[18] B. Schuller and B. Vlasenko, “Cross-corpus acoustic emotion 
recognition: variances and strategies,” IEEE Trans. Affect. 
Comput., vol. 1, no. 2, pp. 119–131, 2010. 

[19] M. Shah, C. Chakrabarti, and A. Spanias, “Within and cross-
corpus speech emotion recognition using latent topic model-based 
features,” EURASIP J. Audio, Speech, Music Process., vol. 2015, 
2015. 

[20] S. M. Feraru, D. Schuller, and B. Schuller, “Cross-language 
acoustic emotion recognition: An overview and some tendencies,” 
in 2015 International Conference on Affective Computing and 
Intelligent Interaction, ACII 2015, 2015, pp. 125–131. 

[21] L. Yang, D. Jiang, L. He, E. Pei, M. C. Oveneke, and H. Sahli, 
“Decision tree based depression classification from audio video 
and language information,” Proc. 6th Int. Work. Audio/Visual 
Emot. Chall. - AVEC ’16, pp. 89–96, 2016. 

[22] M. Valstar et al., “AVEC 2016 - depression, mood, and emotion 
recognition workshop and challenge,” pp. 3–10, 2016. 

[23] F. Ringeval, M. Valstar, N. Cummins, R. Cowie, M. Schmitt, and 
A. Mallol-ragolta, “AVEC 2019 workshop and challenge : state-
of-mind, depression with AI , and cross-cultural affect 
recognition,” in ACM Multimedia, AVEC ’19, 2019. 

[24] X. Ma, H. Yang, Q. Chen, D. Huang, and Y. Wang, 
“DepAudioNet: an efficient deep model for audio based 
depression classification,” in Proceedings of the 6th International 
Workshop on Audio/Visual Emotion Challenge - AVEC ’16, 2016, 
pp. 35–42. 

[25] A. Ray, S. Kumar, R. Reddy, P. Mukherjee, and R. Garg, “Multi-
level attention network using text, audio and video for depression 
prediction,” AVEC 2019 - Proc. 9th Int. Audio/Visual Emot. 
Chall. Work. co-located with MM 2019, pp. 81–88, 2019. 

[26] Z. Huang, J. Epps, and D. Joachim, “Speech landmark bigrams 
for depression detection from naturalistic smartphone speech,” in 
ICASSP, 2019, pp. 5856–5860. 

[27] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE 
Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010. 

[28] D. a. Reynolds and R. C. Rose, “Robust text-independent speaker 
identification using Gaussian mixture speaker models,” IEEE 
Trans. Speech Audio Process., vol. 3, no. 1, pp. 72–83, 1995. 

[29] M. E. Peters et al., “Improving language understanding by 
generative pre-training,” OpenAI, pp. 1–10, 2018. 

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient 
estimation of word representations in vector space,” in arXiv, 
2013, pp. 1–12. 

[31] Y. Aytar, C. Vondrick, and A. Torralba, “SoundNet: Learning 
sound representations from unlabeled video,” Adv. Neural Inf. 
Process. Syst., no. Nips, pp. 892–900, 2016. 

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language 
understanding,” in arXiv preprint arXiv:1810.04805, 2018. 

[33] M. Magill, F. Z. Qureshi, and H. W. De Haan, “Neural networks 
trained to solve differential equations learn general 
representations,” Adv. Neural Inf. Process. Syst., vol. 2018-
Decem, no. NeurIPS, pp. 4071–4081, 2018. 

[34] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How 
transferable are features in deep neural networks?,” Adv. Neural 
Inf. Process. Syst., vol. 4, no. January, pp. 3320–3328, 2014. 

[35] A. Tamkin, T. Singh, D. Giovanardi, and N. Goodman, 
“Investigating transferability in pretrained language models,” in 
arXiv, 2020. 

[36] G. Alain and Y. Bengio, “Understanding intermediate layers 
using linear classifier probes,” in arXiv preprint 
arXiv:1610.01644., 2016. 

[37] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: 
understanding transfer learning for medical imaging,” in 
arXiv:1902.07208, 2019, no. NeurIPS. 

[38] J. Gratch et al., “The Distress Analysis Interview Corpus of 
human and computer interviews,” in LREC, 2014, pp. 3123–3128. 

[39] K. Kroenke, R. L. Spitzer, and J. B. W. Williams, “The PHQ-9: 
Validity of a brief depression severity measure,” J. Gen. Intern. 
Med., vol. 16, no. 9, pp. 606–613, 2001. 

[40] K. Paliwal, “Spectral subband centroid features for speech 
recognition,” in ICASSP, 1998, pp. 617–620. 

 

4565


