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Abstract
Changes in speech production that occur as a result of psy-
chomotor slowing, a key feature of Major Depressive Disorder
(MDD), are used to non-invasively diagnose MDD. In previ-
ous work using data from seven subjects, we showed that us-
ing speech-inverted vocal tract variables (TVs) as a direct mea-
sure of articulation to quantify changes in the way speech is
produced when depressed relative to being not depressed out-
performs formant information as a proxy for articulatory infor-
mation. In this paper, we made significant extensions by using
more subjects, taking into account more eigenvalue features and
incorporating TVs related to (1) place of articulation and (2) the
glottal source. These additions result in a significant improve-
ment in accuracy, particularly for free speech. As a baseline, we
perform a similar analysis using higher-dimensional Mel Fre-
quency Cepstral Coefficients (MFCCs).
Index Terms: speech production, vocal tract variables, psy-
chomotor slowing, neuromotor coordination, depression, men-
tal health, glottal

1. Introduction
Major Depressive Disorder (MDD), also known as clinical de-
pression, is a mental health disorder that can be characterized
by long-lasting depressed mood (sadness or hopelessness) or
loss of interest in activities that will cause significant impair-
ment in daily life. Around 264 million people worldwide suffer
from MDD [1]. Depression is one of the most common precur-
sors leading to suicidality which is the second leading cause of
death in youth in the United States between 10 and 34 years of
age [2]. Most of the previous work on depression classification
and severity prediction focused on prosodic, source, and spec-
tral features [3, 4, 5]. The work presented in this paper explores
the possibility of improving the performance of depression de-
tection task using articulatory representations of speech.

Psychomotor slowing is identified as a major characteristic
of depression [6, 7]. Currently, it is viewed as a necessary fea-
ture of MDD and a key component in assessing and monitoring
the severity of depression [8, 9, 10]. Effects of psychomotor
slowing observed in speech include more and longer pauses,
slowed responses and monotonic phrases [11]. The motiva-
tion for quantifying the articulatory coordination comes largely
from these effects. These articulatory coordination features can
be used to characterize the level of articulatory coordination
and timing. To measure the coordination, assessments of the
multi-scale structure of correlations among the time series sig-
nals were used [12, 13, 14]. This was extensively done using
acoustic features consisting of the first three resonances of the
vocal tract (formants). However this approach has been less ex-

tensively validated using direct articulatory speech features.
In a preliminary study by the authors [15], the use of

speech-inverted vocal tract variables (TVs) as a direct measure
of articulation to quantify changes in the way speech is pro-
duced by depressed and non-depressed subjects was explored.
The TVs are based on Articulatory Phonology (AP) [16], which
views speech as a constellation of overlapping gestures, and are
defined by the constriction degree and location of five distinct
constrictors (lips, tongue tip, tongue body, velum, and glottis)
along the vocal tract. We used the Mundt database [17] for the
experiments. In this pilot study, we used the eigenspectrum fea-
tures computed from the corresponding time-delay embedded
correlation matrices based on a subset of TVs to perform de-
pression classification. Using only seven subjects, we showed
that the coordination features computed over three TVs corre-
sponding to constriction degree outperform those of three for-
mants in classifying depressed vs. not depressed speech. For
formants, accuracies of 57.1% and 42.9% were observed for
read and free speech, respectively. For TVs, the respective ac-
curacies were 64.3% and 71.43%. It was observed that the ar-
ticulators of depressed speech have less complex coordination
associated with more coupled movements which results in re-
duced variability (coarticulation and lenition) and high intelli-
gible speech.

In this paper, we have extended the preliminary study by
(1) including results from a more complete set of TVs (adding
constriction location TVs and glottal TV), (2) using data from
additional subjects in the Mundt database and (3) using a wider
range of eigenspectrum features as inputs to the classification
model. We show that including the location TVs further im-
proves the accuracy of the classifier (77.22% for RS and 75.71%
for FS). By incorporating periodicity and aperiodicity measures
to represent the glottal TV, a significant accuracy improvement
was observed for FS (81.77%).

In Section 2, we explain the dataset, the estimation of the
TVs, computation of the coordination features, and the details
of the classification experiments. Section 3 presents the results
of classification experiments and graphical illustrations of coor-
dination features. Finally, in Section 4 we interpret these results
in detail and discuss the possible future directions.

2. Method
2.1. Dataset Description

For this study, we used a subset of the Mundt Database [17]
which contains speech samples collected over a period of six
weeks from thirty five physician-referred patients. The pa-
tients started on pharmacotherapy and/or psychotherapy treat-
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ment for depression close to the beginning of the study. The
speech recordings were collected using interactive voice re-
sponse (IVR) technology. Speech data collected through this
study include read speech (the Grandfather passage) and spon-
taneous speech where patients describe how they feel emotion-
ally, physically and their ability to function in each week. In
addition to this, other elicited voice measures include sustained
vowels (for 5 seconds), counting from 1 to 20, reciting the En-
glish Alphabet, and /pa-ta-ka/ repeated rapidly for 5 seconds.

We used the clinician-reported Hamilton Depression Rating
Scale (HAMD) score to choose subjects for the depressed and
non-depressed classes with a balanced distribution. In the case
of read speech, we chose all speech when subjects are depressed
(HAMD≥20) and all speech when subjects are not depressed
(HAMD≤ 7). In the case of free speech, we used the same
HAMD thresholds, but selected only those utterances that are
less than 30 sec in duration for depressed speech to obtain a
balanced distribution of two classes. For free speech (total of 26
subjects), there were 51 utterances for depressed speech and 66
utterances for non-depressed speech. For read speech (total of
30 subjects), there were 33 and 20 utterances for depressed and
non-depressed speech, respectively. Note that in the preliminary
study [15], we used only 7 utterances (from 7 subjects) for each
class for both read and free speech.

2.2. Acoustic-to-Articulatory Speech Inversion (SI)

A speaker independent, DNN based SI system is used to com-
pute the Vocal Tract Variables (TVs) that represent constriction
location and degree of articulators located along the vocal tract
[18, 19].

The model was trained using the Wisconsin X-Ray Mi-
crobeam (XRMB) database [20]. The XRMB recordings
originally comprise of naturally spoken utterances along with
XRMB cinematography of the mid-sagittal plane of the vocal
tract with pellets placed at points along the vocal tract. The tra-
jectory data are recorded for the individual articulators: Upper
Lip, Lower Lip, Tongue Tip, Tongue Blade, Tongue Dorsum,
Tongue Root, Lower Front Tooth (Mandible Incisor), Lower
Back Tooth (Mandible Molar). We call these trajectories as pel-
let trajectories. The X-Y positions of the pellets are closely tied
to the anatomy of the speakers. The quantification of the vocal
tract shape is better performed by the location and the degree
of these constrictions based on relative measures as opposed to
the X-Y positions of the pellets. The TVs specify the salient
features of the vocal tract area function more directly than the
pellet trajectories [21] and are relatively speaker independent.
Hence, the pellet trajectories were converted to TV trajectories
using geometric transformations as outlined in [22] to define a
corpus of ‘ground truth’ TV trajectories. The six TVs obtained
from the seven pellet trajectories were – Lip Aperture (LA), Lip
Protrusion (LP), Tongue Body Constriction Location (TBCL),
Tongue Body Constriction Degree (TBCD), Tongue Tip Con-
striction Location (TTCL) and, Tongue Tip Constriction Degree
(TTCD).

2.3. Glottal TV Estimation

Descriptions of speech articulation in Articulatory Phonology
typically include TVs related to the glottal state. Due to the dif-
ficulty in acquiring ground-truth glottal TV data by placing the
sensors near the glottis, the DNN based SI system could not be
trained to estimate the glottal TVs. As an alternative to this, we
used the periodicity and aperiodicity measure obtained from the

Aperiodicity, Periodicity and Pitch (APP) detector developed in
[23]. This program estimates the proportion of periodic energy
and aperiodic energy in a speech signal along with the pitch
period for the periodic component. This uses a time domain
approach and is based on the distribution of the minima of the
average magnitude difference function (AMDF) of the speech
signal:

γkn =

∞∑
m=−∞

|x(n+m)w(m)−x(n+m−k)w(m−k)| (1)

where x(n) is the input signal, w(m) is a 20-ms rectangular
window and k is the lag value, which varies from 0 to the sample
value equivalent of 20 ms (eg., for the sampling rate of 16kHz,
k will have the range of [0,320]).

2.4. Mel-Frequency Cepstral Coefficients (MFCCs) Esti-
mation

We used higher-dimensional MFCCs as a proxy for actual artic-
ulatory features instead of formants as used in the preliminary
study, to enable fair comparisons with the higher dimensional
TV data. For this, 12 MFCC time series were extracted by us-
ing an analysis window of 20 ms with a 10 ms frame shift (1st

MFCC coefficient was discarded).

2.5. Coordination Features

The correlation structure features [12] were used to estimate the
coordination among three sets of time series data: 6 TVs (con-
striction location and degrees), 8 TVs (adding the glottal TVs to
6 TVs) and 12 MFCCs. For each speech signal, a channel-delay
correlation matrix is computed from low-level multi-channel
signals (TVs or MFCCs in this case), using a time-delay em-
bedding at a constant delay scale (7 samples). The sampling
rate of TVs and MFCCs was 100Hz, therefore the delay scale
of 7 samples introduced delays to the signals in 70 ms incre-
ments. This correlation matrix is computed as an intermediate
representation of the complexity of speech coordination. This
compact representation provides more detail about which time
series signal is correlated with which, and at which time delays,
and is therefore rich with information about the mechanisms
underlying the coordination level. Each correlation matrix Rj
has dimensionality (MN x MN ), based on M = 6, 8 or 12
channels and N = 15 time delays per channel. A rank or-
dered eigenspectrum is computed from the correlation matrix
Rj , taking the form of an MN-dimensional (90-,120- or 180-
dimensional) feature vector. The rank ordering is in descending
order, such that the rank 1 eigenvalue is the largest and the rank
MN eigenvalue is the smallest.

These time-delay embedded articulatory coordination fea-
tures are useful in capturing the information related to temporal
dynamics of multivariate time series data and can easily be ex-
tended to any number of channels.

Another interpretation to these eigenvalues which supports
the above hypothesis can be found in [24]. The amplitude of
each eigenvalue is proportional to the amount of correlation in
the direction of their associated eigenvectors and the sum of
the eigenvalues will remain constant. Additionally, depressed
speech has few eigenvalues with significant magnitudes. There-
fore, depressed speech can be represented using a few indepen-
dent dimensions implying that there is less complexity asso-
ciated with articulatory coordination and more coupled move-
ments. In non-depressed speech, given that the magnitude of the

4552



Figure 1: Standardized feature values of coordination features
in the not-depressed speech samples relative to those in the de-
pressed speech samples (Free Speech (top), Read Speech (bot-
tom))

high-rank eigenvalues are higher, it can be thought of as more
complex articulatory coordination that is associated with a large
number of independent dimensions.

2.6. Classification Experiments

Experiments were conducted to understand how well these co-
ordination features, computed over MFCCs and TVs could be
used to train a model to classify depressed vs. not depressed
speech. The features were individually standardized (i.e., z-
scored) across all instances prior to model training and testing.
In order to utilize more eigenspectrum features, instead of us-
ing two points in the spectrum like we did in the preliminary
study, we averaged the eigenspectrum features in different index
ranges to obtain a low-dimensional representation of the high
dimensional eigenspectrum feature vector. Model training and
testing were carried out within a leave-one-subject-out cross-
validation scheme. When N number of subjects were present,
at each fold, a Support Vector Machine (SVM) classifier was
trained on data samples of N − 1 subjects and used as the basis
for estimating a label for the test utterances from the remaining
subject. Classification accuracy of these estimated labels was
calculated across all folds.

3. Results
We plotted the eigenspectrum features that are associated with
depressed and non-depressed speech samples for the three cases
we analyzed (see Figure 1). For visualization purposes we use
the standardized feature-wise means as a function of the nor-
malized eigenvalue feature index (j − 1)/MN . For a given
feature index j, the values of the curves plotted in Figure 1 were
calculated according to:

εj =
µγj
sj

(2)

Figure 2: Effect sizes between the feature-wise means (Cohen’s
d) of coordination features in the not-depressed speech samples
relative to those in the depressed speech samples (Free Speech
(top), Read Speech (bottom))

where µγj is the mean feature value, 1/nγ
∑
i∈γ λi,j , for all

samples taken in the state γ ∈ not depressed (nd), depressed
(ds) The quantity sj is the pooled standard deviation, defined
as:

sj =

√
(nds − 1)sdsj + (nnd − 1)sndj

nds + nnd − 2
(3)

where sdsj and sndj are variances in depressed and not-depressed
classes respectively. Eigenspectrum features are shown for read
and free speech, and for 6 TVs, 8 TVs, and 12 MFCCs. The
magnitudes of low-rank eigenvalues for depressed speech are
higher relative to non-depressed speech and the trend is reversed
towards the high-ranked eigenvalues as explained in section 2.5.

The effect sizes relative to the depressed state can be com-
puted by the Cohen’s d equation:

dj =
µndj − µdsj

sj
(4)

The Cohen’s d plots given in Figure 2 show the discrimi-
nation between the depressed and the non-depressed classes for
each set of features and can be quantified using the largest mag-
nitude and mean absolute magnitudes of Cohen’s d values as
shown is Table 1.

Table 1: Largest magnitudes and mean absolute magnitudes for
Cohen’s d values, across all features for free speech (FS) and
read speech (RS).

Feature Set Max (FS) Mean (FS) Max (RS) Mean (RS)

6 TVs 1.48 1.03 1.19 0.71
8 TVs 1.85 1.42 1.34 0.74

MFCCs 1.75 1.21 1.30 0.44

The accuracy results obtained for leave-one-subject-out
cross-validation training procedure are included in the Table 2.

Table 2: Classification accuracies (%) and index ranges over
which the averages were calculated to obtain features for clas-
sification experiments.

6 TVs 8 TVs MFCCs

RS Accuracy 77.22 77.5 72.77
Index Range ≤ 0.68, [0.68-

0.76] ≥ 0.76
≤ 0.16, [0.16-
0.6], ≥ 0.6

≤ 0.08, [0.08-
0.18], ≥ 0.18

FS Accuracy 75.71 81.77 81.70
Index Range ≤ 0.46, [0.46-

0.76], ≥ 0.76
≤ 0.3, [0.3-
0.47], ≥ 0.47

≤ 0.58, ≥
0.58
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(a) HAMD=24 (b) HAMD=7

(c) DS-ND

Figure 3: Time-Delay correlation matrix comparison for Read
Speech – Subject 127 – from the Mundt database.

(a) HAMD=24 (b) HAMD=7

(c) DS-ND

Figure 4: Averaged Time-Delay correlation matrix comparison
for Free Speech – Subject 127 – from the Mundt database.

4. Discussion
The low rank eigenvalues being larger for high HAMD session
(high depression) relative to the low HAMD session and the
trends being reversed towards the high rank eigenvalues is a
signature observation associated with depression severity. The
dimensionality of the time-delay embedded feature space can
be indicated by the magnitude of high rank eigenvalues. Thus,
larger values in the high rank eigenvalues indicate greater com-
plexity of articulatory coordination [12]. This trend (low-rank
eigenvalues being larger for the depressed class) is held in gen-
eral for all three cases (except in the case of MFCCs based read
speech eigenspectra). It can be seen that by adding the glottal
TVs, TV based articulatory coordination features can achieve an
accuracy of 81.77% which is about a 8% relative improvement
compared to the best accuracy obtained using only constriction
degree and location TVs.

Even though we observed comparable results for the MFCC
based free speech depression classification, the read speech
classification results underperform those obtained for the TVs.
We can see that the corresponding standardized read speech
eigenspectrum for MFCCs does not hold the general trend of
coordination features and the deviation of non-depressed class
eigenvalues relative to the depressed class is relatively low

which might have caused the degradation in accuracy results.
The MFCC based results show that feature dimensionality alone
may not be helpful in improving the classification performance
and TVs include better discriminative information in represent-
ing articulatory coordination in depressed speech with both free
speech and read speech. Since depression results in changes in
speech production and given our approach is articulatory based,
we believe it is easier to understand what changes may be oc-
curring when a person is depressed.

According to the Cohen’s D plots, the discrimination be-
tween the depressed and the non-depressed classes are maxi-
mum (Table 1) in the case of 8 TVs (i.e. when the glottal TV
is included) and hence a higher accuracy for both free speech
and read speech. The APP detector based glottal TVs seem
to provide additional source information related to differenti-
ating articulatory coordination in depressed and non-depressed
speech. These glottal measures are also indicative of the breath-
iness (aperiodic energy in the higher frequencies) of the speech
signal. Therefore it is worthwhile to investigate if increased
breathiness is a characteristic of the depressed speech in the fu-
ture. These observations are inline with the results presented in
[25].

In Figures 3 and 4, we show the TV based correlation matri-
ces (includes all 8 TVs) corresponding to a single subject (127)
in a depressed and non-depressed state, along with the differ-
ence matrix of the two correlation matrices. For read speech,
a single speech sample is used and for free speech, the average
across multiple files is considered. The difference plots indi-
cate that there are relatively higher auto- and cross- correlations
present among the TVs in the depressed state compared to the
not-depressed state in both the cases. This is inline with our
hypothesis of having simpler coordination when a subject is de-
pressed. We also observe that there is considerably more cor-
relation for free speech relative to read speech. This can be
another reason for higher classification accuracies observed for
free speech. Therefore, free speech can be useful in providing
a better representation of the neuromotor coordination involved
during speech production due to the increased cognitive load
associated with it.

In our future work, we will explore if the TVs can be com-
plemented by other speech features such as dynamic temporal
features of TVs (velocity and acceleration) and pause related
features, which may be helpful to increase the performance of
the depression assessment models. We also plan to explore clas-
sifiers that combine MFCCs and TVs. We will extend the use
of TV based articulatory coordination features in predicting the
depression severity scores.
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