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Abstract
This paper introduces a method of extracting coarse prosodic
structure from fundamental frequency (F0) contours by using a
discriminative approach such as deep neural networks (DNN),
and applies the method for the parameter estimation of the Fu-
jisaki model. In the conventional methods for the parameter es-
timation of the Fujisaki model, generative approaches, in which
the estimation is treated as an inverse problem of the generation
process, have been adopted. On the other hand, recent develop-
ment of the discriminative approaches would enable us to treat
the problem in a direct manner. To introduce a discriminative
approach to the parameter estimation of the Fujisaki model in
which the precise labels for the parameter are expensive, this
study focuses on the similarities between the acoustic realiza-
tion of the prosodic structure in F0 contours and the sentence
structure of the read text. In the proposed method, the sen-
tence structure obtained from the text is utilized as the labels for
the discriminative model, and the model estimates the coarse
prosodic structure. Finally this structure is refined by using a
conventional method for the parameter estimation. Experimen-
tal results demonstrate that the proposed method improves the
estimation accuracy by 18% in terms of detection rate without
using any auxiliary features at inference.
Index Terms: the Fujisaki model, SPACE, voice F0 contours

1. Introduction
In the field of text-to-speech (TTS), the quality of synthe-
sized speech has improved dramatically since the advent of
WaveNet [1], and more recently, the end-to-end model has
achieved naturalness almost equivalent to natural speech [2].
However, the control of para/non-linguistic information such
as emotion and speaking style in TTS has not yet reached that
level. Prosodic information, especially the fundamental fre-
quency (F0), has a large impact on these para/non-linguistic in-
formation. Therefore, modeling F0 is still very important for
TTS, dialogue systems, and voice conversion.

The Fujisaki model is a well-founded mathematical model
that formulates an F0 contour as the superposition of phrase and
accent components, which correspond to the pitch variation of
phrase units and those of accent units, respectively [3]. These
components are controlled by the parameters of Fujisaki model,
i.e., the positions and the magnitudes of impulse-like phrase
commands and stepwise accent commands. Since this model
incorporates the process of human speech with an explicit for-
mula and can approximate F0 contours of real utterances with
a small number of parameters, it has been applied to various
languages and shown its validity [4, 5, 6, 7, 8, 9].

The estimation of the Fujisaki model commands from raw
F0 contours is not an easy problem, because parameters should
approximate the observed F0 contour while meeting the con-
straint imposed in the Fujisaki model. Recently, however, a
powerful method for the parameter estimation, called SPACE,

which translates the Fujisaki model into a probabilistic genera-
tive model, has been proposed [10]. Since the Fujisaki model
is a generative model of F0 contours, this method treats the es-
timation problem of the parameters as an inverse problem of
the generation process. In order to further improve this method,
researchers have focused on the close relationship between the
command of the Fujisaki model and linguistic information, and
proposed methods combining SPACE with auxiliary linguistic
or spectral features [11, 12, 13, 14].

On the other hand, the remarkable development of discrim-
inative methods in recent years would make it possible to solve
the problem of the parameter estimation in a direct manner.
Generally speaking, a large amount of labeled data which di-
rectly correspond to a target problem is required for adopting
a discriminative method. However the precise labels for the
parameters of the Fujisaki model is quite expensive. These la-
bels have been manually annotated by professionals of speech
prosody field. Preparing a large amount of the target informa-
tion enables us to obtain the benefits of discriminative models.

In this paper, we investigate the integration of a discrim-
native approach with the SPACE method. To address the data-
hungry issue in discriminative approaches, we focus on the sim-
ilarities between the prosodic structure of a speech and the syn-
tactic structure of the corresponding text, and used the syntactic
structure obtained from text as the target labels of the discrim-
inative model. As this model ignores the aspect of the Fujisaki
model as a generative model and the target of the model is ob-
tained only from text, the output is coarse prosodic structure.
To obtain the finer prosodic structure, the output of the discrim-
inative model is integrated with SPACE. For the discriminative
model, SPACE method is regarded as a refiner of the coarse
prosodic structure. On the other hand, for SPACE, the output of
the discriminative models is viewed as the auxiliary linguistic
information. In the proposed approach, the generative and the
discriminative approach are complementary to each other.

The rest of this paper is organized as follows: Section 2
briefly introduces the original Fujisaki model and the parameter
estimation framework, SPACE. Section 3 presents the proposed
method using a discriminative approach for the parameter esti-
mation of the Fujisaki model. Section 4 describes the experi-
mental evaluations. Section 5 concludes this paper.

2. Generative Model of Speech F0 Contours
2.1. Fujisaki Model
The Fujisaki model formulates an F0 contour in logarithmic
scale, y[k], where k is time, as the superposition of a phrase
component xp[k], an accent component xa[k] and a base com-
ponent µb:

y[k] = xp[k] + xa[k] + µb. (1)

The phrase component xp[k] represents long-scale pitch varia-
tions over the duration of prosodic units, and the accent com-
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Figure 1: The state transition topology of the command se-
quence. p, a, r denotes phrase states, accent states and rest
states, respectively.

ponent xa[k] represents relatively short-scale pitch variations in
accent units. µb is a constant value which represents the lower
bound of the speaker’s logF0. The phrase and accent compo-
nents are generated by second-order, critically-damped linear
filters Gp[k] and Ga[k] in response to an impulse-like phrase
command up[k] and a stepwise accent command ua[k], respec-
tively:

xp[k] = Gp[k] ∗ up[k], (2)
xa[k] = Ga[k] ∗ ua[k]. (3)

In these equations, ∗ denotes convolution over time.

2.2. Stochastic formulation of F0 Contours model (SPACE)
In this section, we briefly review a conventional powerful
framework for the command estimation of the Fujisaki model,
called SPACE [10]. In SPACE, u[k] = (up[k], ua[k])

> is
treated as a model parameter, which is emitted from the path-
restricted hidden Markov model (HMM) illustrated in Figure 1.
To model the duration of rest states and accent states, each state
is split into frame-level sub states. The output distribution of
each HMM state is a Gaussian distribution:

u[k] ∼ N (u[k];µ[k],Σ) , (4)

where µ[k] = (µp[k], µa[k])
>,Σ = diag(v2p, v

2
a) are the

mean vector and the covariance matrix of the output distribu-
tion of state in time k, respectively. The output sequence of
the above HMM up[k], ua[k] is then convoluted with differ-
ent second-order filtersGp[k] andGa[k], to generate the phrase
and accent component xp[k], xa[k] as described in (2) and (3),
respectively. The logarithmic F0 contour x[k] is then derived
from (1).

In order to incorporate the uncertainty of observed F0 con-
tours, an observed F0 contour y[k] is modeled as the super-
position of the above x[k] and a noise component xn[k] ∼
N
(
0, vn[k]

2
)
:

y[k] = x[k] + xn[k]. (5)
By marginalizing xn[k] out, the probability density function of
y = {y[k]}Kk=1, given u = {u[k]}Kk=1, can be written as fol-
lows:

P (y | u) =
K∏

k=1

N
(
y[k];x[k], v2n[k]

)
. (6)

The parameters u and θ, where θ denotes the parameters of the
HMM, are optimized by locally maximizing P (u, θ | y) using
EM algorithm. The details of this process are described in [10].

Beam search
decoder

F0 contour
V/UV

1D Convolutional
stack Softmax Command

pattern

CTC model

Command
estimation model

Estimated
command

Narusawa’s
method

Initial
command

1D Convolutional
stack Softmax Post

processing

Initial
command

Command
estimation model

Estimated
command

F0 contour
V/UV

CE model

F0 contour
V/UV

Command
estimation model

Estimated
command

Narusawa’s
method

Initial
command

p a pa

Command
pattern

p a pa

(a)

(b)

(c)

Figure 2: Overview of the proposed model. (a) SPACE [10].
(b) FIX model. (c) INIT model and INIT FIX model. Only
INIT FIX model uses the red lines.

3. Discriminative Approaches for
Command Estimation of the Fujisaki Model
3.1. Overview
The command estimation of the Fujisaki model is equivalent to
the maximization problem of P (u | y) with respect to u. This
section introduces methods for the parameter estimation of the
Fujisaki model using discriminative approaches, which solve
the problem in a direct manner. However, building a model
that receives y as input and emits the parameters u involves
two problems. The first problem is that the precise labels for
the parameters of the Fujisaki model are quite expensive. To
avoid this data-hungry problem, this study focuses on the simi-
larity between the acoustic realization of prosodic structure and
the sentence structure of the read text, and uses the sentence
structure obtained from text analysis as the target of the model.
The second problem is that since a discriminative model does
not consider the generation process, there would be mismatch
between the observed F0 contours and the reconstructed ones
from the obtained parameters. To address it, this study adopts
a discriminative model that outputs coarse prosodic structure
and then refines this structure using SPACE. As the target la-
bels obtainable from text, this study investigated two types of
structure: the order of phrase/accent commands and the prob-
ability of command type (phrase, accent, rest) at each frame.
These types of coarse structure are utilized as the state transi-
tion topology and the initial commands of SPACE, respectively.
The discriminative models that correspond to the former is re-
ferred to as connectionist temporal classification (CTC) model
and the latter as cross entropy (CE) model. The overview of the
proposed model is illustrated in Figure 2.

3.2. CTC model
The command occurrence in the naive SPACE algorithm is very
sensitive to the hyperparameter vn and the initial commands,
since there is no constraint that restricts the number and the or-
der of commands. As a proper constraint, the order of the com-
mand occurrence (command pattern) is expected to help SPACE
to obtain more accurate command sequences. If the occurrence
of commands is restricted by a proper command pattern, the es-
timated command sequence keeps the appropriate number and
the order, which leads to stable command estimation.

Command patterns correspond to the state transition topol-
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ogy in SPACE, which is described in Figure 1. Therefore, in
order to integrate the constraint of the command pattern into
SPACE, it is necessary to transform the state transition topology
to a left-to-right one. In this case, SPACE estimates the timing
and the duration of each command in the pattern. Since it is
reported that the hard E-step accelerates the estimation process
and slightly increases the estimation accuracy, it is implemented
by adopting the hard E-step [11], which replaces the E-step of
EM algorithm with a point estimation procedure. To obtain
command patterns from F0 contours, it is a reasonable approach
to define the loss of the output sequence by using CTC in the
same way as the speech recognition [15], since F0 contours are
continuous and command patterns are discrete. Hereinafter, this
pattern estimation model is referred to as “CTC model” and the
command estimation model whose transition topology is fixed
by the output of CTC model is referred to as “FIX model”.

3.3. CE model
Since the parameter optimization of SPACE adopts EM algo-
rithm, its results of command estimation converge to a local
optimal solution and strongly depend on the initial commands.
In most of methods utilizing SPACE, the initial commands are
calculated by Narusawa’s method [16]. This method reason-
ably extracts commands from F0 contours, but its performance
is limited due to its strong hypothesis that F0 contours can be
approximated by third-order polynomials.

On the other hand, by using the rough positions of com-
mands that are emitted from a discriminative model are ex-
pected to perform well as the initial commands of SPACE, since
they are generated considering overall shape of an F0 contour.
Hence, we train a discriminative model that outputs the proba-
bility of command type at each frame. Since the raw output of
this model is just probability and ignores the constraint of the
Fujisaki model, the following process is executed for the out-
put: 1) The maximum phrase command probability is detected
for each unvoiced regions, and if it is larger than threshold Tp,
there exists a phrase command of magnitude Ap. 2) Moving
average filter with window size La is applied to the accent com-
mand probability, and if the value is larger than Ta, there exists
an accent command of magnitude Aa. Also, accent commands
which are completely included in unvoiced regions or with du-
ration shorter than Da are deleted. 3) The commands obtained
from the above processing are used as the initial commands.

Hereinafter, we denote this model as “CE model”, and
SPACE with these initial commands is referred to as “INIT
model”. In addition, it is also possible to automatically ob-
tain the command pattern from the initial commands. As the
obtained command pattern has the same number and order as
itself, fixing the transition topology of INIT model using the
command pattern would further enhance the performance of
command estimation. This model is referred to as “INIT FIX
model”. Although estimating command magnitude by a regres-
sion model is also a possible approach, we investigated only the
discriminative model since magnitude is very sensitive to the
base component and hard to estimate directly.

3.4. Related works
There have been some approaches that expand SPACE using
auxiliary linguistic features. Sato et al. incorporated the re-
lationship between the onset of the accent commands and the
phoneme boundary into SPACE by using time variation of the
spectral features and the phoneme alignment [11, 12]. Hojo et
al. constructed a DNN that maps frame-level linguistic feature
vectors to the state posterior probabilities of the HMM on the

basis of DNN-HMM framework [17], to model the relationship
between the commands and linguistic information [13]. Our
previous study explicitly linked the occurrence of phrase com-
mands to the boundaries of phrase structure to treat phrase struc-
ture as the minimal unit of focus control [14]. The proposed
method differs from them in that it treats linguistic information
as flexible coarse structure, i.e., the transition topology and the
initial commands of SPACE, and SPACE itself is only utilized
to refine the structure.

4. Experiments
4.1. Experimental conditions
To evaluate the performance of the proposed methods, experi-
ments of command estimation were conducted. To investigate
the effects of the training data, two different datasets were pre-
pared: 450 utterances of the ATR Japanese sentence database B-
set spoken by a male speaker (0.5 hours), ATR henceforth [18],
and the JVS corpus spoken by 49 male speakers (12.4 hours),
JVS henceforth [19]. The other 53 utterances of the ATR
database were used for the evaluation. F0 contours were ex-
tracted by Kameoka’s method [20].

To prepare the target labels of the discriminative models,
two types of procedures were adopted. The first procedure is
TEXT, where the labels are automatically prepared from pairs
of speech and text in the following way: 1) phone alignment
and text analysis are executed using Julius and Open JTalk 1,
respectively [21]. 2) Phrase and accent commands are allocated
to the pause positions and the accented morae, respectively. The
second procedure is MANUAL, where a professional of speech
prosody field manually annotates the ground-truth commands.
The purpose of training models with MANUAL labels is to know
the upper bound of the performance of the proposed models.
From these commands obtained from the above procedures,
one-hot labels for 3 states in frame level for CE model and com-
mand pattern labels for CTC model were generated.

For both CE and CTC models, the input consisted of two
dimensions, which were logF0 and V/UV information. To re-
move the influence of the difference of base component µb, the
lowest value in voiced region was subtracted from logF0 for
each utterance. The model architecture was CNN of 4 layers
with RELU as activation function. The window size was set at
101, 81, 15, 5, respectively, which was also common between
the two models. As for CE model, the loss of phrase states
was weighted by 20 times because the occurrence of them is
less frequent than the other states. The parameters were set at
Tp = 0.3, Ta = 0.5, Ap = 0.4, Aa = 0.5, La = 40 ms,
Da = 16 ms, respectively. The hyperparameters of SPACE
were fixed at the same value as [10]. For FIX and INIT FIX
model, vn = 0.03 was adopted, instead of 0.2.

The accuracy of command pattern was calculated as the
mean of Levenshtein distance between the estimated pattern and
the ground-truth one. The performance of command estimation
was measured on the basis of two criteria: logF0 RMSE (root
mean squared error) and detection rates. The detection rate is
a measure of how accurate the positions of the estimated com-
mands are, and calculated in the following way: First, match-
ing between the estimated and ground-truth commands is per-
formed using dynamic programming algorithm. If the time dif-
ference between an estimated command and a ground truth one
is shorter than predefined tolerance S, the estimated command
is considered “matched” and the local distance is set at 0. Oth-
erwise the local distance is 1. The time difference of two accent

1http://open-jtalk.sp.nitech.ac.jp
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Table 1: Levenshtein distance between the estimated and the
ground-truth command pattern with 95% confidence intervals.

JVS TEXT ATR TEXT ATR MANUAL

CTC model 2.00± 0.27 1.33± 0.25 0.96± 0.21
CE model 1.27± 0.23 1.12± 0.24 0.94± 0.26

Narusawa 2.47± 0.43
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Figure 3: Result of command estimation. The left and right
graph shows the detection rate and logF0 RMSE, respectively.
Note that the performance of DNN-SPACE is taken from [13].

commands is calculated as the average of time difference be-
tween the two onsets and two offsets of them. Let NE and NA

be the number of commands in the estimated and ground truth
sequences, NM be the number of the matched commands be-
tween the two sequences. The insertion error EI is defined as
(NE−NM)/NA, the deletion error rateED as (NA−NM)/NA,
and the detection rate is calculated as 1 − EI − ED. Note that
the magnitudes of commands were not evaluated, because esti-
mation of magnitudes is very sensitive to the base component
µb, which is set differently in SPACE and manual annotation.

4.2. Experimental results
Table 1 shows the result of command pattern estimation. We
can see that regardless of the target label and the model, the pro-
posed methods estimate closer command patterns to the ground-
truth ones than the conventional Narusawa’s method. This result
shows that command patterns can be estimated from the overall
shape of F0 contours reasonably well by training the discrim-
inative model. Interestingly, it is also shown that CE model
can estimate the command pattern more accurately than CTC
model, while the latter directly minimizes the loss of the com-
mand pattern sequence. The reason for this result may be that
CE model is trained with frame-level target labels, which have
rich information, while CTC model knows only the command
pattern and do not know the exact position of each command.

The result of command detection rate with S = 0.3 s is
shown in the left side of Figure 3. This figure shows that almost
all of the proposed models outperform the conventional meth-
ods in terms of command detection rate. This result demon-
strates that using coarse prosodic structure estimated by the
discriminative model improves the performance of command
estimation model. Specifically, INIT and INIT FIX improved
the detection rate by 7% to 15% and 9% to 18% compared to
the original SPACE, respectively. From this result we can con-
clude that obtaining the initial commands of SPACE using the
discriminative model helps the command estimation, and the
performance is further improved by fixing the transition topol-
ogy. In terms of the training data, we can see that the model
performance improves even if the target label is automatically
generated from text (* TEXT) or CE model is trained speaker-
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Figure 4: Example of command estimation by INIT FIX model
trained with ATR TEXT. (1) An observed F0 contour in voiced
regions (solid line) and the estimated one by the proposed model
(dotted line). (2) Ground-truth commands. (3) Commands es-
timated by SPACE [10]. (4) Output of CE model (dotted line)
and initial commands (solid line). (5) Commands estimated by
the proposed model.

independently (JVS TEXT). On the other hand, FIX model only
improved the performance when CTC model is trained speaker-
dependently (ATR *). This is probably because the length of
the pauses and the strength of the accents vary greatly from per-
son to person, and CTC model, which is trained without using
time information, is unable to absorb these differences when it
is trained speaker-independently.

The right side of Figure 3 shows the experimental result
of logF0 RMSE. We can see that the performance of F0 re-
construction in the proposed methods is slightly worse than
that of the conventional method. This is because estimating
the commands from F0 contours is a ill-posed problem, and
even though the estimated command do not correspond to the
ground-truth ones, it can approximate the observed F0 contour.

Figure 4 shows an example of command estimation. We
can see that CE model outputs reasonable values considering
the overall shape of the F0 contour, and the estimated command
by the proposed model is very similar to the ground-truth one,
while conventional SPACE has an insertion error around t =
0.8 and a deletion error around t = 5.4.

5. Conclusions
This paper has introduced a method to extract the parameters of
Fujisaki model from speech signals using a discriminative ap-
proach. To avoid the data-hungry problem, this study focused
on the similarities between the prosodic structure of a speech
and the sentence structure of the corresponding text, and utilized
the sentence structure obtained from text as the target labels of
the discriminative model. To refine the obtained coarse prosodic
structure, a conventional powerful framework for the parame-
ter estimation was adopted. Experimental results revealed that
the proposed method improved estimation accuracy by 18% in
terms of the command detection rate without utilizing any aux-
iliary features at inference, and even if the target labels were
generated automatically from text and the model was trained
speaker-independently, the improvement was 9% compared to
the conventional method. For further works, the application of
the proposed approach for TTS should be investigated.
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