
Improved Prosody from Learned F0 Codebook Representations for VQ-VAE
Speech Waveform Reconstruction

Yi Zhao1, Haoyu Li1, Cheng-I Lai2, Jennifer Williams3, Erica Cooper1, Junichi Yamagishi1,3

1National Institute of Informatics, Japan
2Massachusetts Institute of Technology, USA

3University of Edinburgh, UK
{zhaoyi,haoyuli,ecooper,jyamagis}@nii.ac.jp, clai24@mit.edu, j.williams@ed.ac.uk

Abstract
Vector Quantized Variational AutoEncoders (VQ-VAE) are a
powerful representation learning framework that can discover
discrete groups of features from a speech signal without su-
pervision. Until now, the VQ-VAE architecture has previ-
ously modeled individual types of speech features, such as only
phones or only F0. This paper introduces an important exten-
sion to VQ-VAE for learning F0-related suprasegmental infor-
mation simultaneously along with traditional phone features.
The proposed framework uses two encoders such that the F0 tra-
jectory and speech waveform are both input to the system, there-
fore two separate codebooks are learned. We used a WaveRNN
vocoder as the decoder component of VQ-VAE. Our speaker-
independent VQ-VAE was trained with raw speech waveforms
from multi-speaker Japanese speech databases. Experimental
results show that the proposed extension reduces F0 distortion
of reconstructed speech for all unseen test speakers, and results
in significantly higher preference scores from a listening test.
We additionally conducted experiments using single-speaker
Mandarin speech to demonstrate advantages of our architecture
in another language which relies heavily on F0.
Index Terms: VQ-VAE, speech synthesis, prosody, representa-
tion learning

1. Introduction
Speech signals contain rich factors existing at different lin-
guistic layers such as prosody, content, and timbre simultane-
ously. Modelling and controlling these factors through neural
representation learning is essential for many speech applica-
tions [1, 2, 3]. In this paper, we focus on Vector Quantized Vari-
ational AutoEncoder (VQ-VAE) [4] since it is a promising self-
supervised representation learning approach suitable for tasks
such as voice conversion (VC) [4, 5], text-to-speech (TTS) syn-
thesis [6, 7, 8], speech coding [9], and even music generation
[10] wherein we need to model and control content, prosody
and speaker characteristics separately.

The VQ-VAE paradigm typically consists of three main
components: an encoder network, VQ codebooks, and a de-
coder network. For speech-related applications, the expected
role of the encoder is to extract phone- or syllable-equivalent
segmental representations, while the decoder reconstructs the
input raw speech waveform via a neural vocoder, such as
WaveNet [11] or WaveRNN [12]. Between the encoder and
decoder is a trainable VQ codebook. The VQ codebook trans-
forms outputs of the encoder network into a set of discrete rep-
resentations for the down-stream task.

A well-known application of VQ-VAE is voice conversion,
which is done by conditioning the decoder with a speaker one-
hot vector or a speaker-embedding vector during training, and
then simply swapping the speaker vector to convert the speaker

vector to a different speaker during inference. In [5], promising
conversion results using an English speech database have been
reported. However, suprasegmental features such as F0, another
important cue in speech signals, are not properly modelled in
the voice conversion framework.

From a preliminary experiment, we found that VQ-VAE-
based speech waveforms typically have inappropriate prosodic
structure in the case of Japanese. This is probably because
Japanese is a pitch-accented language, which means that pitch
accents directly affect the meaning of words and the perceived
naturalness of the speech. However, unlike tonal languages such
as Mandarin, in which each syllable is coupled with a specific
tone index, Japanese pitch accentual patterns (high or low) of
each mora are affected by the information at a different linguis-
tic layer from the syllable layer, such as adjacent words. Hence,
we hypothesize that a successful VQ-VAE architecture needs to
simultaneously extract not only representations corresponding
to the segmental features, but also another set of representations
corresponding to the supra-segemental features.

Motivated by this, we propose an extension to VQ-VAE
structure utilizing two encoders at the same time. One encoder
uses a raw speech waveform for input exactly as the original
VQ-VAE does. The other encoder uses F0 trajectory as input to
separately learn the pitch patterns as well as other F0-related
supra-segmental information. This model was trained using
a loss function that jointly considers two types of VQ losses
as well as the usual coarse-to-fine waveform losses used for
training WaveRNN. Listening test results show that this simple
yet effective extension significantly improves prosody and nat-
uralness of reconstructed Japanese speech waveforms. The ex-
tended VQ-VAE structure was motivated by Japanese prosody,
but it can be applied to speech in any language. Therefore, we
also show results of the extended VQ-VAE using a Mandarin
speech database for further analysis.

This paper is structured as follows: Section 2 gives an
overview of the original VQ-VAE framework, and Section 3
explains our proposed extension for the F0 representation. Sec-
tion 4 elaborates the details of the extended VQ-VAE. Section 5
shows experimental results in Japanese and Mandarin. Finally,
we summarize our findings in Section 6.

2. Overview of VQ-VAE
VQ-VAE is a self-supervised learning technique that uses an
encoder network, VQ codebooks, and a decoder network, as
defined below:

z1:N = EncoderΦ1(o1:T ), (1)
e1:N = Vector quantizationΦ2

(z1:N ), (2)

ô1:T = DecoderΦ3(e1:N , s) (3)
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Figure 1: Overall framework

The encoder Φ1 takes a raw speech waveform of length T ,
o1:T = {o1, · · · ,oT }, as the input and first encodes it into
a raw latent vector sequence z1:N = {z1, · · · ,zN}. Using the
raw latent vectors, the vector quantization function Φ2 returns
a quantized code vector (that is, centroid) sequence e1:N =
{e1, · · · , eN}. Down-stream tasks can use indices of the quan-
tized code vectors as categorical representations. For example,
in TTS the indices would represent pseudo phone symbols. Fi-
nally, the decoder network Φ3 such as WaveNet or WaveRNN
reconstructs the speech waveform of the same length T using
the quantized code sequence e1:N . The decoder network can
optionally include a speaker vector s as a global condition.

This VQ-VAE is trained using a penalized log-likelihood
function below:

L(Φ) = − log p(o1:T |e1:N ;Φ3)

+
∥∥e1:N − sg[z1:N ]

∥∥2
2
+ β

∥∥z1:N − sg[e1:N ]
∥∥2
2
,

(4)

The first term is a log-likelihood function of the decoder net-
work that measures appropriateness of reconstructed speech
waveforms. In the case of WaveRNN, this term corresponds
to the multi-class cross-entropy loss using a dual softmax
layer that predicts the coarse- and fine-waveform representa-
tions [12]. The second term drives the quantized vectors to-
wards the raw latent vectors. The third term is a penalty term
that prevents the output of the encoder from growing arbitrar-
ily large [4]. The operator sg[·] zeroes out the gradient back-
propagated to the argument. β is a hyper-parameter correspond-
ing to the commitment loss to make sure the encoder commits
to the codebook embedding.

3. Proposed Extension for F0
In this paper, we extend the VQ-VAE structure and introduce
two encoders. One of them uses a raw speech waveform
o1:T of length T as the input, as the original VQ-VAE does.
The other encoder uses an upsampled F0 trajectory F1:T =
{F1, · · · , FT } of length T as the input, as shown in Figure 1:

zo
1:N = EncoderΦ1o

(o1:T ), (5)

zF
1:N = EncoderΦ1F

(F1:T ), (6)

eo
1:N = Vector quantizationΦ2o

(zo
1:N ), (7)

eF
1:N = Vector quantizationΦ2F

(zF
1:N ), (8)

ô1:T = DecoderΦ3(e
o
1:N , e

F
1:N , s) (9)

Outputs of the two encoders are separately quantized and the
speech waveform is then reconstructed using the two sets of
code vectors. In the extended VQ-VAE, two sets of representa-
tions, i.e., indices of the quantized code vectors for each encoder
become available for the down stream tasks. We hope that the
discrete representations learned from F0 capture pitch patterns
and/or other suprasegmental information. The proposed exten-
sion is straightforward, but we observe that it results in impres-
sive improvements for prosody, especially F0 of reconstructed
speech waveforms in Japanese.

(a) (b)

Figure 2: Encoder framework (a) and downsampling block (b)

Its loss function can also be defined in a similar way:

L(Φ) = − log p(o1:T |eo
1:N , e

F
1:N ;Φ3)

+
∥∥eo

1:N − sg[zo
1:N ]

∥∥2
2
+ β

∥∥zo
1:N − sg[eo

1:N ]
∥∥2
2
,

+ γ(
∥∥eF

1:N − sg[zF
1:N ]

∥∥2
2
+ β

∥∥zF
1:N − sg[eF

1:N ]
∥∥2
2
),

(10)

Here γ is a new hyper-parameter.
This extension is related to VQ-VAE based speech coding

by Gârbacea et al. [9] wherein a second decoder was introduced
to predict both a speech waveform and an F0 trajectory at the
same time. F0 prediction loss was also introduced in the train-
ing process in [9]. However, unlike our extension, a common
encoder and codebooks were used. Another related extension
comes from SPEECHSPLIT [13] wherein three different auto-
encoders were used to disentangle the speech signal into com-
ponents, however their aim was to extract continuous latents.

4. Details of the Extended VQ-VAE
We implemented the extended VQ-VAE based on a public im-
plementation of VQ-VAE1. Here we describe details of the ex-
tended VQ-VAE used for our experiments.

4.1. Waveform and Upsampled Normalized F0
The input waveform representation is linear PCM. The output
waveform is parameterized for coarse and fine parts separately
unlike the input waveform, and they are notated as ôt = (ct, ft)
in the following sections. Linear F0 including unvoiced regions
is extracted frame-by-frame and then normalized sentence by
sentence using the minimum and maximum values of each ut-
terance. This normalization helps the model to focus on the
pitch trajectory while casting away speaker information. It can
also benefit the discretized latent representation learning since
it shrinks the dynamic range of continuous F0 values. Then, the
extracted F0 is upsampled via a transposed convolutional layer
in order to be aligned with the waveform points. In our imple-
mentation, the input waveform is 16-bit linear PCM at 22.05k
sampling frequency, and ct and ft are both 8-bit.

4.2. Encoder
Encoders for raw waveform and F0 (Eqs. 5 and 6) share the
same architecture. Each of them has ten down-sampling blocks
(Figure 2 (a)). Each block consists of a 1D convolution layer,
followed by another 1D convolution layer and a gated activation
layer using tanh and sigmoid functions. Outputs of the gated
activation are further filtered using 1D convolution. The num-
ber of channels is set to 256 for the first convolution layer, and
128 for the second convolution layer. The final 1D convolu-
tion is also set to 128 channels. The residual connection com-
bines sparsified block input with block output to retain block

1https://github.com/mkotha/WaveRNN
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Figure 3: Decoder framework. rt is output of the last upsam-
pling block. ct and ft represent coarse and fine bits, respec-
tively, of an output waveform ot at time t. P (ct) and P (ft)
at the outputs are probabilities estimated by the dual softmax
layer. s is the global condition.

input information before down sampling. Its diagram is shown
in Figure 2 (b). To encourage generalization, we introduce addi-
tive and multiplicative Gaussian noise to the waveform and F0
inputs. Without these types of noise, the model tends to be sen-
sitive to small input perturbations, and over-fitting occurs after
a certain point in training. The downsampling rate of the entire
encoder is approximately N/T ≈ 0.0145.

4.3. Vector Quantization
In vector quantization of Eq. 7, the encoder output zo

n at time
step n is quantized using the closest vector included in the VQ
codebook, as computed by Euclidean distance. The closest code
vector eo

n for each time step n is repeated for the entire se-
quence to obtain eo

1:N . The same operation is conducted for
Eq. 8, with separate codebook for F0 to output eF

1:N . In our
implementation, the waveform codebook consists of 512 code
vectors of 128 dimensions. As for the F0 codebook, we varied
the number of code vectors from 6 to 512 and found out that
ten code vectors are capable enough to capture the F0 trajectory
variation. The dimension of the F0 code vector is also 128.

4.4. Decoder
The purpose of the decoder is to reconstruct a speech waveform
ô1:T using the code vector sequences eo

1:N and eF
1:N together

with the global condition s. As shown in Figure 3, our decoder
of Eq. 9 was implemented using a combination of upsampling
blocks, downsampling blocks, and a WaveRNN module.
Up-sampling block: Time scales for the code vectors and
waveform are different from each other because the encoder
downsamples the code vectors. Therefore we use upsampling
blocks so that code vectors (eo

n and eF
n ) are at the same oper-

ating rate as the waveform points. Each upsampling block is a
GRU layer followed by a transposed convolution network.
Down-sampling block: Since WaveRNN is an auto-regressive
(AR) model, it uses the coarse component ct−1 of the output
waveform ôt−1 at time t− 1 as an additional condition for pre-
dicting a next waveform point ôt at time t [12]. To do this, the
past coarse components are downsampled and combined with
the next code vectors. The downsampling block is similar to
Figure 2 (b) except for the lack of residual connections. There
are three downsampling blocks. The output of each one is con-
nected to the corresponding upsampling block like a U-net [14].
For the AR feedback, teacher-forcing strategy is used for train-
ing and predicted waveforms are used for inference.
WaveRNN module: This module takes the output of the
last upsampling block rt and the previous sample ôt−1 =
(ct−1, ft−1), and predicts coarse and fine bits at time t via sepa-
rated softmax layers, not simultaneously but one-by-one. It first
predicts coarse bits ct, then uses ct to predict fine bits ft. It con-
sists of one common GRU layer and two separated feedforward
layers for coarse and fine bits, respectively. In our framework,
the global condition s is inserted as an additional input to all

layers in the decoder.

4.5. Global Conditions and Neural Speaker Embedding
We used three types of global conditions, gender, emotion, and
speaker, as s of Eq. 9. The gender and emotions are represented
using simple one-hot vectors (two and four dimensions, respec-
tively). It is ideal to determine number of emotional classes
from data in an unsupervised way [6], but, for simplicity, we
used labeled data in this work. The speaker condition is repre-
sented using a neural embedding vector obtained from a speaker
encoder, which was pre-trained using the Learnable Dictionary
Encoding (LDE) and angular softmax [15]. The original dimen-
sion of the speaker embedding vector is 512 and we reduced
its dimension to 50 using Linear Discriminant Analysis.2. For
more details, refer to Section 2 of [16] and its implementation3.

4.6. Expected Down-Stream Tasks
An example of expected down-stream tasks using our extended
VQ-VAE is TTS without any manual labels. Since the pro-
posed model allows us to automatically learn segmental and F0-
related suprasegemental discrete representations, it is expected
that we can build a TTS system without using manually-defined
phone sets or pitch accent labels by just predicting the code in-
dices from text. This would be useful for under-resourced di-
alects and languages. For instance, Japanese dialects have dif-
ferent pitch accent patterns from the standard ones and there
are no established methods for annotating them. Some African
languages such as Ibibio also use tones [17]. However, the con-
struction and evaluation of down-stream tasks are beyond the
scope of this paper. The focus of this paper is to show that the
proposed extended VQ-VAE can produce a higher quality of
speech thanks to the F0 encoder and its codebook.

5. Experiments
Speech databases: We mainly experimented with Japanese
speech databases. We combined the JVS corpus [18], JTES
corpus [19], and an in-house corpus introduced in our previous
work [20] in order to augment training data. Details of the cor-
pora are as follows: There are a total of 212 speakers (half male
and half female), each with around 100 utterances. We used
192 speakers out of the 212 speakers for training and validation.
The total number of utterances in the training set is 20,000. The
JTES corpus and in-house corpus contain four kinds of emo-
tions: neutral, happy, joy, and angry. The JVS corpus has only
neutral speech. We selected 8 speakers and 10 utterances per
speaker as the test set. Our test speakers are completely un-
seen and omitted from both training and validation sets. The
testing utterances were common across all speakers. In addi-
tion, we conducted a small experiment on a Mandarin dataset
to analyze the performance in another tonal language. We used
a publicly-available single-speaker Chinese standard Mandarin
speech corpus4. Around 9,000 utterances were used for training
and validation. 80 utterances were used for evaluation.

All speech data was down-sampled to 22.05kHz and preci-
sion was converted to 16 bits per sample. The waveform ampli-
tude was normalized to -26 dBov in advance using ITU-T G.191
called “sv56” [21]. The silence segments were also trimmed in
advance using Librosa [22]. F0 values were automatically ex-
tracted using a CREPE model [23] with a frame shift of 5ms.

2To consider the balance of gender, emotion, and speaker, we dupli-
cated the gender embedding by 5 times and the emotion embedding by
10 times. Thus the total dimension of global conditions is 100.

3https://github.com/jefflai108/pytorch-kaldi-neural-speaker-embeddings
4https://www.data-baker.com/open source.html
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Table 1: F0 RMSE errors and P563-based estimated MOS
scores of each Japanese test speaker and their average. Nat-
ural speech MOS score is 4.2 on average. Original VQ-VAE
doesn’t have F0 encoder but the extended one does.

Speaker Gender VQ-VAE log F0 P563
RMSE MOS

Speaker 1 M Original 0.51 3.8
Extended 0.30 4.2

Speaker 2 M Original 0.46 3.6
Extended 0.20 5.0

Speaker 3 M Original 0.49 3.8
Extended 0.27 3.9

Speaker 4 M Original 0.43 3.7
Extended 0.24 3.9

Speaker 5 F Original 0.36 4.0
Extended 0.25 4.5

Speaker 6 F Original 0.30 3.7
Extended 0.23 4.2

Speaker 7 F Original 0.36 3.0
Extended 0.27 3.5

Speaker 8 F Original 0.41 4.1
Extended 0.27 4.1

Average M+F Original 0.42 3.8
Extended 0.26 4.2

Speaker encoder and speaker embedding: Before training
VQ-VAE models, we first trained an LDE-based speaker en-
coder using a multi-speaker Japanese corpus called ATR-APP5

to construct a language-dependent speaker encoder. This cor-
pus has thousands of Japanese speakers and we used 135k ut-
terances for training. Using this pre-trained speaker encoder,
we extracted speaker embedding vectors from the training set
of the above Japanese databases.
VQ-VAE training: Both the original and extended VQ-
VAE parameters are optimized using the Adam [24]. Hyper-
parameters β in Eq. 10 is initialized as 0.001 and linearly in-
creased to 0.01 after 1k steps. γ is set to 10 for the first 10k
steps, then until 100k steps it is linearly reduced to 0.1 and re-
mains fixed thereafter. Total number of steps is 1000k and it
took 10 days on a TESLA V100 GPU card for each model.

5.1. Objective Evaluation in Japanese
We first computed F0 distortion between input speech and re-
constructed speech as an objective evaluation. We also ran the
P.563 algorithm [25] for evaluating the reconstruction quality.
Results for each test speaker and the average are shown in Ta-
ble 1. We can see that the proposed extension reduced the F0
distortion for all test speakers as expected. Moreover, we can
see that reconstructed speech using the extended VQ-VAE gen-
erally has higher P563 scores than that using the original VQ-
VAE. The averaged score of the extended VQ-VAE is 4.2 and is
the same as that of the input natural speech.

5.2. Subjective Evaluation in Japanese
We conducted an AB preference test and compared the VQ-
VAE with and without the F0 encoder subjectively6. Subjects
are native speakers of Japanese and the number of subjects was
21. Each subject was asked to listen to a total of 20 pairs, and for
each pair they were asked to choose the one that sounds better
in terms of appropriateness of pitch accents and quality.

Table 2 shows the preference score and 95% confidence in-
tervals for each test speaker, and the average. As we can see
from the table, our proposed extension has achieved signifi-

5https://www.atr-p.com/products/sdb.html
6Audio samples are available at: https://nii-yamagishilab.github.io/

yi-demo/interspeech-2020/index.html.

Table 2: Preference scores and 95% confidence intervals (CI)
of each Japanese test speaker and their average.

Speaker Original [%] Extended [%] 95% CI
Speaker 1 8.8 91.2 ±3.6
Speaker 2 15.4 84.6 ±6.7
Speaker 3 2.4 97.6 ±3.4
Speaker 4 6.0 94.0 ±6.8
Speaker 5 4.1 95.9 ±5.7
Speaker 6 11.3 88.7 ±8.8
Speaker 7 7.6 92.4 ±7.4
Speaker 8 5.8 94.2 ±6.6
Average 7.7 92.3 ±2.1

Table 3: F0 RMSE errors and P563-based estimated MOS
scores for Mandarin speaker. Natural speech MOS score is 4.4.

Speaker VQ-VAE log F0 RMSE P563 based MOS

Chinese Original 0.22 4.4
Extended 0.15 4.4

cantly higher preference scores than the original VQ-VAE for
all the test speakers, and this clearly demonstrates that the ex-
tended VQ-VAE learned complementary supra-segemental fea-
tures, which are critical for human perception.

5.3. Extensions to Tonal Languages: Mandarin
We also trained a speaker-dependent VQ-VAE without and with
the F0 encoder using the Mandarin database to analyze what
happens in another language. Table 3 gives the F0 distortion be-
tween input speech and reconstructed speech and P.563-based
estimated MOS scores. From this table, we can see that the
proposed extension effectively reduced the F0 distortion for the
Mandarin speaker, as expected. The RMSE value for the Man-
darin speaker is smaller than those of the Japanese speakers,
but this is not surprising since the Mandarin model is speaker-
dependent whereas the Japanese model is speaker-independent,
and all test speakers in Japanese are unseen.

P.563-based MOS of the Mandarin speaker shows a differ-
ent tendency from the Japanese results in Table 1. The MOS
scores of Mandarin reconstructed speech are 4.4 for the VQ-
VAE without and with the F0 encoder, which is the same as that
of the input speech. This is because Mandarin syllables and a
tone index can be coupled and be represented together, unlike
the Japanese pitch accents. For learning tones separately from
syllables, explicit disentanglement using adversarial loss or mu-
tual information [26] would be needed. This is our next step.

6. Conclusions
This paper proposed an extension of VQ-VAE for learning F0-
related suprasegmental information additionally. The extended
framework uses a F0 trajectory as additional input and learns
discrete representations for F0. We constructed a speaker-
independent VQ-VAE model using the Japanese databases and
showed that reconstructed speech has lower F0 RMSE for all
unseen speakers. A listening test also indicated significantly
higher preference scores. An additional experiment using the
single-speaker Mandarin database also showed the proposed
model reduced F0 distortion in another language. Our future
work will include the evaluation of down-stream tasks using
learned discrete representations such as TTS and explicit dis-
entanglement of latents for F0 and waveforms.
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[9] C. Gârbacea, A. van den Oord, Y. Li, F. S. Lim, A. Luebs,
O. Vinyals, and T. C. Walters, “Low bit-rate speech coding with
vq-vae and a wavenet decoder,” in ICASSP. IEEE, 2019, pp.
735–739.

[10] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever, “Jukebox: A generative model for music,” arXiv
preprint arXiv:[TODO], 2020.

[11] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[12] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” arXiv preprint arXiv:1802.08435, 2018.

[13] K. Qian, Y. Zhang, S. Chang, D. Cox, and M. Hasegawa-Johnson,
“Unsupervised speech decomposition via triple information bot-
tleneck,” arXiv preprint arXiv:2004.11284, 2020.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted
intervention. Springer, 2015, pp. 234–241.

[15] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system,”
Odyssey 2018, The Speaker and Language Recognition Workshop,
2018.

[16] E. Cooper, C.-I. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen, and
J. Yamagishi, “Zero-shot multi-speaker text-to-speech with state-
of-the-art neural speaker embeddings,” ICASSP, pp. 6184–6188,
2020.

[17] M. Ekpenyong, E.-A. Urua, O. Watts, S. King, and J. Yamagishi,
“Statistical parametric speech synthesis for ibibio,” Speech Com-
munication, vol. 56, pp. 243 – 251, 2014.

[18] S. Takamichi, K. Mitsui, Y. Saito, T. Koriyama, N. Tanji, and
H. Saruwatari, “JVS corpus: free Japanese multi-speaker voice
corpus,” arXiv preprint arXiv:1908.06248, 2019.

[19] T. Kosaka, Y. Aizawa, M. Kato, and T. Nose, “Acoustic model
adaptation for emotional speech recognition using twitter-based
emotional speech corpus,” in APSIPA ASC. IEEE, 2018, pp.
1747–1751.

[20] Y. Zhao, A. Ando, S. Takaki, J. Yamagishi, and S. Kobashikawa,
“Does the Lombard Effect Improve Emotional Communication
in Noise? — Analysis of Emotional Speech Acted in Noise,” in
Proc. Interspeech 2019, 2019, pp. 3292–3296.

[21] International Telecommunication Union, Recommendation
G.191: Software Tools and Audio Coding Standardization, Nov
11 2005.

[22] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[23] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe: A convo-
lutional representation for pitch estimation,” in ICASSP. IEEE,
2018, pp. 161–165.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[25] I. Rec, “P. 563: Single-ended method for objective speech quality
assessment in narrow-band telephony applications,” International
Telecommunication Union, Geneva, pp. 1–25, 2004.

[26] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal,
P. Bachman, A. Trischler, and Y. Bengio, “Learning deep repre-
sentations by mutual information estimation and maximization,”
arXiv preprint arXiv:1808.06670, 2018.

4421


